第二节 可分离变量的微分方程
在本节及接下来的章节中,我们将讨论一阶微分方程 𝑦′=𝑓(𝑥,𝑦)y′=f(x,y) (2-1) 的各种解法。
一阶微分方程有时可以写成对称的形式:
在这种形式中,变量 𝑥x 和 𝑦y 是对称的。此方程可以看作以 𝑥x 为自变量、 𝑦y 为因变量的方程 (当 𝑄(𝑥,𝑦)≠0Q(x,y)=0 时):
或者可以看作以 𝑦y 为自变量、 𝑥x 为因变量的方程 (当 𝑃(𝑥,𝑦)≠0P(x,y)=0 时):
1. 可分离变量的示例
在第一节的例 1 中,我们遇到了一阶微分方程:
𝑦′=2𝑥y′=2x
或者表示为:
𝑑𝑦=2𝑥𝑑𝑥dy=2xdx
直接对方程两端积分得到通解:
𝑦=𝑥2+𝐶y=x2+C
然而,并不是所有一阶微分方程都可以直接积分求解。例如,考虑以下方程:
𝑦′=2𝑥𝑦3y′=2xy3 (2-3)
在这里,无法直接对两端积分,因为右侧的表达式同时含有 𝑥x 和 𝑦y 的函数关系。为了使方程易于求解,我们可以通过两端乘以 1𝑦3y31 来分离变量,使其变为:
1𝑦3𝑑𝑦=2𝑥𝑑𝑥y31dy=2xdx
接着,对等式两端进行积分:
−12𝑦2=𝑥2+𝐶−2y21=x2+C (2-4)
这里, 𝐶C 是任意常数。
可以验证,函数 (2-4) 确实满足微分方程 (2-3),且含有一个任意常数,因此它是方程 (2-3) 的通解。
2. 一般形式的可分离变量微分方程
一般来说,如果一个一阶微分方程可以写成:
𝑔(𝑦)𝑑𝑦=𝑓(𝑥)𝑑𝑥g(y)dy=f(x)dx (2-5)
也就是说,方程一侧仅包含 𝑦y 和 𝑑𝑦dy 的函数,而另一侧仅包含 𝑥x 和 𝑑𝑥dx 的函数,那么这个方程就称为可分离变量的微分方程。
假定方程 (2-5) 中的函数 𝑔(𝑦)g(y) 和 𝑓(𝑥)f(x) 都是连续的。若 𝑦=𝜙(𝑥)y=ϕ(x) 是方程 (2-5) 的解,将它代入 (2-5) 中可以得到:
对等式两端进行积分,并引入变量 𝑦=𝜙(𝑥)y=ϕ(x),得:
设 𝐺(𝑦)G(y) 和 𝐹(𝑥)F(x) 分别是 𝑔(𝑦)g(y) 和 𝑓(𝑥)f(x) 的原函数,则:
因此,方程 (2-5) 的解满足关系式 (2-6)。
反过来,如果 𝑦=𝜙(𝑥)y=ϕ(x) 是由关系式 (2-6) 确定的隐函数,那么在 𝑔(𝑦)≠0g(y)=0 的条件下, 𝑦=𝜙(𝑥)y=ϕ(x) 也是方程 (2-5) 的解。通过隐函数求导法可以得出:
这表示函数 𝑦=𝜙(𝑥)y=ϕ(x) 满足方程 (2-5)。
因此,如果已分离变量的方程 (2-5) 中 𝑔(𝑦)g(y) 和 𝑓(𝑥)f(x) 是连续的,并且 𝑔(𝑦)≠0g(y)=0,那么通过对方程两端积分所得到的关系式 (2-6) 就是微分方程 (2-5) 的隐式解。由于该隐式关系含有任意常数,因此它是方程 (2-5) 的通解。
当 𝑓(𝑥)≠0f(x)=0 时,关系式 (2-6) 中确定的隐函数 𝑥=𝜓(𝑦)x=ψ(y) 也可以看作是方程 (2-5) 的解。
第七章 微分方程
例 1: 求微分方程 𝑦′=2𝑥𝑦y′=2xy (2-7) 的通解。
解: 方程 (2-7) 是可分离变量的,分离变量后得:
两端积分:
得到:
从而:
这里, 𝐶C 是任意非零常数,且 𝑦=0y=0 也满足方程 (2-7)。因此,方程 (2-7) 的通解为:
例 2: 放射性元素铀由于不断地放射出微粒子而变成其他元素,铀的含量就不断减少。这种现象称为衰变。已知 𝑡=0t=0 时铀的含量为 𝑀0M0,求在衰变过程中铀含量 𝑀(𝑡)M(t) 随时间 𝑡t 的变化规律。
解: 铀的衰变速度即 𝑀(𝑡)M(t) 对时间 𝑡t 的导数。由于铀的衰变速度与其含量成正比,因此得到微分方程:
其中 𝐴A ( 𝐴>0A>0 ) 是常数,称为衰变系数。负号是由于 𝑡t 增加时 𝑀M 单调减少。
根据题意,初值条件为:
方程 (2-8) 是可分离变量的。分离变量后得:
两端积分:
以 ln𝐶lnC 表示任意常数,并考虑到 𝑀>0M>0,得到:
即:
这就是方程 (2-8) 的通解。代入初值条件,得到:
所以:
这就是铀的衰变规律。铀的含量随时间呈指数衰减 (图 7-1)。
例 3: 设降落伞从跳伞塔下落后,受到的空气阻力与速度成正比,并设降落伞离开跳伞塔时 ( 𝑡=0t=0 ) 速度为零,求降落伞下落速度与时间的函数关系。
解: 设降落伞的下落速度为 𝑣(𝑡)v(t)。降落伞在空中下落时,受到重力 𝑃P 和阻力 𝑅R 的作用 (图 7-2)。重力大小为 𝑚𝑔mg,方向与 𝑣v 一致;阻力大小为 𝑘𝑣kv ( 𝑘k 为比例系数),方向与 𝑣v 相反。所以,降落伞所受外力为:
𝐹=𝑚𝑔−𝑘𝑣F=mg−kv
根据牛顿第二运动定律 𝐹=𝑚𝑎F=ma,得到:
𝑚𝑑𝑣𝑑𝑡=𝑚𝑔−𝑘𝑣mdtdv=mg−kv (2-9)
按题意,初值条件为:
𝑣(0)=0v(0)=0
方程 (2-9) 是可分离变量的。分离变量后得:
𝑚𝑚𝑔−𝑘𝑣𝑑𝑣=𝑑𝑡mg−kvmdv=dt
两端积分:
∫𝑚𝑚𝑔−𝑘𝑣𝑑𝑣=∫𝑑𝑡∫mg−kvmdv=∫dt
得到:
考虑到 𝑚𝑔−𝑘𝑣>0mg−kv>0,从而:
解得:
这就是方程 (2-9) 的通解。
将初值条件 𝑣(0)=0v(0)=0 代入 (2-10) 式,得到:
𝐶=1C=1
于是特解为:
从 (2-11) 可以看出,随着时间 𝑡t 的增加,速度 𝑣v 逐渐接近常数 𝑚𝑔𝑘kmg,但不会超过它。开始阶段降落伞加速下落,但随后逐渐接近等速下落。
例 4: 有高为 1m 的半球形容器,水从底部小孔流出,小孔横截面面积为 1cm² (图 7-3)。开始时容器内盛满了水,求水从小孔流出过程中容器里水面的高度 ℎh 随时间 𝑡t 变化的规律,并求水流完所需的时间。
解: 根据流体力学知识,水从孔口流出的流量 𝑄Q (即通过孔口横截面的水体积 𝑉V 对时间 𝑡t 的变化率) 可以由公式计算:
其中 𝑘k 为流量系数,由实验测得 𝑘=0.62k=0.62; 𝑆S 为孔口横截面面积; 𝑔g 为重力加速度。
另一方面,设在微小时间间隔 [𝑡,𝑡+𝑑𝑡][t,t+dt] 内,水面高度由 ℎh 降至 ℎ+𝑑ℎh+dh ( 𝑑ℎ<0dh<0 ),则可以得到:
其中,𝑟r 是时刻 𝑡t 时的水面半径 (图 7-3)。负号是因为 𝑑ℎ<0dh<0 而 𝑑𝑉>0dV>0。
因为:
𝑟=12−(1−ℎ)2=2ℎ−ℎ2r=12−(1−h)2=2h−h2
所以 (2-13) 式变成:
比较 (2-12) 和 (2-14) 式,得到:
这是未知函数 ℎ=ℎ(𝑡)h=h(t) 应满足的微分方程。
此外,开始时容器内水是满的,所以未知函数 ℎ=ℎ(𝑡)h=h(t) 还应满足初值条件:
ℎ(0)=1h(0)=1 (2-16)
方程 (2-15) 是可分离变量的。分离变量后得:
两端积分:
其中,𝐶C 是任意常数。
把初值条件 (2-16) 代入 (2-17) 式,得到:
将 𝐶C 代入 (2-17) 式并化简,得到:
代入 𝑘=0.62k=0.62,𝑆=10−4S=10−4 m²,𝑔=9.8g=9.8 m/s² 计算可得:
上式表达了水从小孔流出过程中容器内水面高度 ℎh 与时间 𝑡t 之间的函数关系。
水完全流出所需的时间为:
𝑡=1.068×104s=2h 58 mint=1.068×104s=2h 58 min
在这个例子中,我们通过对微小量 𝑑𝑉dV 的分析得到了微分方程 (2-15)。这种微小量分析的方法,也是建立微分方程的一种常用方法。