8.12.9 ACM-ICPC数学 裴蜀定理

8.12.9 ACM-ICPC数学 裴蜀定理

引入

裴蜀定理,又称贝祖定理或欧几里德定理,是一个重要的数论结论,它为我们寻找两个数的线性组合提供了一个数学依据。定理的核心在于,给定两个正整数 𝑎a 和 𝑏b,我们可以通过找到它们的最大公约数来构造它们的线性组合。

定理的定义

裴蜀定理: 对于任意两个正整数 𝑎a 和 𝑏b,存在整数 𝑥x 和 𝑦y,使得它们的线性组合 𝑎𝑥+𝑏𝑦ax+by 等于它们的最大公约数,即

gcd(𝑎,𝑏)=𝑎𝑥+𝑏𝑦。gcd(a,b)=ax+by。

其中,gcdgcd 表示两个数的最大公约数。

示例

假设我们给定两个数 𝑎=56a=56 和 𝑏=32b=32,我们想找到它们的线性组合,使得

56𝑥+32𝑦=gcd(56,32)。56x+32y=gcd(56,32)。

通过计算可得它们的最大公约数是 8。根据裴蜀定理,我们可以找到两个整数 𝑥=−1x=−1 和 𝑦=2y=2,使得:

56×−1+32×2=8。56×−1+32×2=8。

因此,我们证明了裴蜀定理的正确性。

扩展欧几里德算法

我们可以通过扩展欧几里德算法来找出符合裴蜀定理的整数 𝑥x 和 𝑦y。其算法流程如下:

  1. 使用欧几里德算法计算两个数 𝑎a 和 𝑏b 的最大公约数。
  2. 在计算最大公约数的过程中,通过递归或迭代的方式,求解对应的线性组合系数。

C++ 代码实现如下:

#include <iostream>

// 扩展欧几里德算法,返回 gcd,同时计算线性组合系数 x 和 y
int gcdExtended(int a, int b, int &x, int &y) {
    // 基本情况
    if (a == 0) {
        x = 0;
        y = 1;
        return b;
    }

    // 递归计算 gcd,并更新 x 和 y
    int x1, y1; // 用于存储递归调用的结果
    int gcd = gcdExtended(b % a, a, x1, y1);

    // 更新当前的 x 和 y
    x = y1 - (b / a) * x1;
    y = x1;

    return gcd;
}

int main() {
    int a = 56;
    int b = 32;
    int x, y;
    int gcd = gcdExtended(a, b, x, y);

    std::cout << "GCD(" << a << ", " << b << ") = " << gcd << std::endl;
    std::cout << "Coefficients x and y: x = " << x << ", y = " << y << std::endl;
    std::cout << "Linear combination: " << a << " * " << x << " + " << b << " * " << y << " = " << gcd << std::endl;

    return 0;
}

应用

裴蜀定理在算法竞赛和实际工程中有广泛应用,例如:

  1. 求模逆元: 在模数 𝑚m 下,若 gcd(𝑎,𝑚)=1gcd(a,m)=1,则 𝑎a 存在唯一的逆元 𝑥x,使得 𝑎𝑥≡1(mod𝑚)ax≡1(modm)。该逆元可以使用扩展欧几里德算法快速求得。

  2. 同余方程: 裴蜀定理可以用于求解形如 𝑎𝑥≡𝑏(mod𝑚)ax≡b(modm) 的同余方程。

  3. 线性丢番图方程: 给定方程 𝑎𝑥+𝑏𝑦=𝑐ax+by=c,如果 gcd(𝑎,𝑏)∣𝑐gcd(a,b)∣c,则可以使用扩展欧几里德算法找到整数解。

通过理解裴蜀定理和扩展欧几里德算法,我们可以更好地掌握数论问题的求解技巧,在 ACM-ICPC 等竞赛中实现更快速高效的算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值