第九节 欧拉方程
欧拉方程是一类特殊的变系数线性微分方程,其解法通常涉及变量替换,将方程化为常系数线性微分方程以便求解。
定义和解法
欧拉方程的一般形式为:
其中 𝑃1,𝑃2,…,𝑃𝑘P1,P2,…,Pk 为常数。为解此方程,常采用变换 𝑥=𝑒𝑡x=et 或 𝑡=ln𝑥t=lnx,这样自变量从 𝑥x 变为 𝑡t,并且有以下导数转换关系:
- 𝑥𝑦′=𝐷𝑦xy′=Dy,
- 𝑥2𝑦′′=𝐷(𝐷−1)𝑦x2y′′=D(D−1)y,
- 𝑥3𝑦′′′=𝐷(𝐷−1)(𝐷−2)𝑦x3y′′′=D(D−1)(D−2)y,
- \ldots,
- 𝑥𝑘𝑦(𝑘)=𝐷(𝐷−1)…(𝐷−𝑘+1)𝑦xky(k)=D(D−1)…(D−k+1)y.
这里 𝐷D 表示对 𝑡t 的求导运算。将以上关系代入原始的欧拉方程,我们将得到一个 𝑡t 为自变量的常系数线性微分方程。求得这个方程的解后,将 𝑡t 换回 ln𝑥lnx,即可得到原方程的解。
示例:求解欧拉方程 𝑥3𝑦′′+𝑥2𝑦′−4𝑥𝑦′=3𝑥2x3y′′+x2y′−4xy′=3x2
解:
首先进行变换,令 𝑥=𝑒𝑡x=et 或 𝑡=ln𝑥t=lnx(注意,此解只适用于 𝑥>0x>0;对于 𝑥<0x<0,可以采用 𝑥=−𝑒𝑡x=−et 或 𝑡=ln(−𝑥)t=ln(−x))。原方程转化为:
𝐷(𝐷−1)(𝐷−2)𝑦+𝐷(𝐷−1)𝑦−4𝐷𝑦=3𝑒2𝑡.D(D−1)(D−2)y+D(D−1)y−4Dy=3e2t.
简化上述方程:
𝐷3𝑦−2𝐷2𝑦−3𝐷𝑦=3𝑒2𝑡.D3y−2D2y−3Dy=3e2t.
或更简洁地,
𝐷3−2𝐷2−3𝐷=3𝑒2𝑡.D3−2D2−3D=3e2t.
求解齐次方程
对应的齐次方程为:
𝐷3−2𝐷2−3𝐷=0,D3−2D2−3D=0,
其特征方程为:
𝑟3−2𝑟2−3𝑟=0,r3−2r2−3r=0,
解得 𝑟=0,𝑟=−1,𝑟=3r=0,r=−1,r=3。因此,齐次方程的通解为:
𝑦ℎ=𝐶1+𝐶2𝑒−𝑡+𝐶3𝑒3𝑡.yh=C1+C2e−t+C3e3t.
求解特解
由于非齐次项 3𝑒2𝑡3e2t,我们猜一个特解形式 𝑦∗=𝑏𝑒2𝑡y∗=be2t,代入非齐次方程得:
4𝑏−8𝑏−6𝑏=3,4b−8b−6b=3,
解得 𝑏=−12b=−21。
因此,特解为:
整体通解
将 𝑡=ln𝑥t=lnx 替换回去,整体通解为:
欧拉方程提供了一种通过变换将变系数微分方程化为常系数微分方程的方法,这在解决一些特殊的工程和物理问题时非常有用。