8.12.29 ACM-ICPC数学 数论 二次域

8.12.29 ACM-ICPC数学 数论 二次域

引言

二次域在数论中扮演着重要角色,尤其是在处理复杂的代数结构和方程时。它们不仅在理论上有趣,而且在算法设计和问题求解中有实际应用。本节将介绍二次域的基本概念、性质以及在ACM-ICPC比赛中的应用。

什么是二次域

定义

二次域是指形如 𝑄(𝑑)Q(d​) 的数域,其中 𝑑d 是不完全平方的整数。这个域包含了所有形式为 𝑎+𝑏𝑑a+bd​ 的数,其中 𝑎a 和 𝑏b 是有理数。

基本性质

  1. 封闭性:二次域中的两个元素的加法、减法、乘法和除法(除数不为零)仍在该域内。
  2. 有理数的扩展:每个二次域都是有理数域 𝑄Q 的扩展。
  3. 共轭:对于二次域中的每个元素 𝑎+𝑏𝑑a+bd​,其共轭为 𝑎−𝑏𝑑a−bd​。共轭的乘积是有理数。

二次域的性质

范数

范数具有保持乘法和除法(非 0)的良好性质: 𝑁(𝑎1+𝑏1𝑑)𝑁(𝑎2+𝑏2𝑑)=𝑁((𝑎1+𝑏1𝑑)(𝑎2+𝑏2𝑑))N(a1​+b1​d​)N(a2​+b2​d​)=N((a1​+b1​d​)(a2​+b2​d​)) 𝑁(𝑎1+𝑏1𝑑)𝑁(𝑎2+𝑏2𝑑)=𝑁(𝑎1+𝑏1𝑑𝑎2+𝑏2𝑑)N(a2​+b2​d​)N(a1​+b1​d​)​=N(a2​+b2​d​a1​+b1​d​​)

一个二次有理数与它的共轭相乘为这个数的范数,因此它的倒数就是它的共轭与范数之比: 𝑎−𝑏𝑑𝑁(𝑎+𝑏𝑑)N(a+bd​)a−bd​​

二次整数

首项系数为1的整系数二次多项式 𝑥2+𝑝𝑥+𝑞=0x2+px+q=0 的零点是: −𝑝±𝑝2−4𝑞22−p±p2−4q​​

称为「含有根号 𝑑d 的二次整数」,全体记作二次整环 𝑍(𝑑)Z(d​),对于加减乘封闭。不同的 𝑑d 对应于不同的整环。普通的整数环是每一个二次整环的子环。

第一种情况

对于所有的 𝑑d, 𝑎+𝑏𝑑a+bd​ 一定是二次整数。

第二种情况

当 𝑑d 模 4 余 1, 𝑎a 与 𝑏b 是奇数的时候,𝑎+𝑏𝑑22a+bd​​ 也是二次整数。因为这种情况也是首系数为1的整系数多项式的零点: 𝑥2−𝑎𝑥+𝑎2−𝑑𝑏24=0x2−ax+4a2−db2​=0

奇数的一半称半整数。两个半整数配上除以4余1的 𝑑d 开二次根号,也是二次整数。

单位数

如果一个二次整数的倒数还是二次整数,称这个二次整数为单位数。二次整数是单位数的充要条件是它的范数为1或-1。单位数对于乘法封闭,构成单位群。

二次域的应用

代数方程

在求解某些代数方程时,二次域可以提供有效的方法。例如,解二次方程 𝑥2+𝑏𝑥+𝑐=0x2+bx+c=0 可以通过引入 𝑏2−4𝑎𝑐b2−4ac​ 的形式来进行。

数论中的应用

  1. 二次同余:在处理二次同余方程时,二次域可以帮助简化问题。例如,解方程 𝑥2≡𝑛(mod𝑝)x2≡n(modp)。
  2. 二次剩余:判定某个数在模 𝑝p 下是否为二次剩余,也可以利用二次域的性质来分析。

ACM-ICPC中的应用

在ACM-ICPC竞赛中,二次域常用于设计算法和解决问题。例如,处理大整数的分解、分析复杂的代数结构等。

具体例子

例1:解二次方程

考虑二次方程 𝑥2−2𝑥−3=0x2−2x−3=0。我们可以通过求根公式 𝑥=−𝑏±𝑏2−4𝑎𝑐2𝑎x=2a−b±b2−4ac​​ 得到解: 𝑥=2±4+122=2±162=2±42x=22±4+12​​=22±16​​=22±4​ 所以解为 𝑥=3x=3 或 𝑥=−1x=−1。

例2:判定二次剩余

判定7是否为模13的二次剩余。通过二次域的性质,可以简化计算并验证7是否有平方根在模13的整数范围内。

结论

二次域是数论中的重要工具,它在理论研究和实际应用中都有广泛的用途。在ACM-ICPC竞赛中,掌握二次域的基本概念和应用方法,对于解决复杂的数学问题和设计高效算法具有重要意义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值