8.12.30 ACM-ICPC数学 数论 循环连分数

8.12.30 ACM-ICPC数学 数论 循环连分数

引言

循环连分数在数论中有着广泛的应用,特别是在表示无理数和解决某些类型的二次方程时具有重要意义。本节将介绍循环连分数的基本概念、性质、线性分式变换以及在ACM-ICPC比赛中的应用。

什么是连分数

定义

连分数是指形如以下形式的表达式: 𝑎0+1𝑎1+1𝑎2+1𝑎3+⋯a0​+a1​+a2​+a3​+⋯1​1​1​ 其中,𝑎0a0​ 是整数,其他 𝑎𝑖ai​ (i > 0) 是正整数。

终止与非终止连分数

连分数可以是终止的,也可以是非终止的。终止连分数表示有理数,而非终止连

终止连分数表示无理数。

循环连分数

定义

当一个连分数从某一项开始重复相同的部分时,这个连分数称为循环连分数。形式上,可以表示为: [𝑎0;𝑎1,𝑎2,…,𝑎𝑘‾][a0​;a1​,a2​,…,ak​​] 其中,𝑎1,𝑎2,…,𝑎𝑘‾a1​,a2​,…,ak​​ 表示从第 𝑎1a1​ 项开始重复的循环部分。

二次无理数

每个二次无理数(即形如 𝑑d​ 的无理数)都可以表示为一个循环连分数。这是一个重要的性质,有助于解决许多数论问题。

循环连分数的性质

表示二次无理数

任何二次无理数都可以表示为循环连分数,反之亦然。具体地,对于一个二次无理数 𝑑d​,可以将其表示为一个循环连分数。

收敛性

循环连分数具有良好的收敛性。其部分分数逐渐逼近无理数的精确值。

最短周期

对于给定的二次无理数,其循环连分数的最短周期是唯一的。这一点对于算法设计和分析特别重要。

线性分式变换

定义

线性分式变换是一个函数 𝑓:𝑅→𝑅f:R→R,使得 𝑓(𝑥)=𝑎𝑥+𝑏𝑐𝑥+𝑑f(x)=cx+dax+b​ 对于一些 𝑎,𝑏,𝑐,𝑑∈𝑅a,b,c,d∈R。

组合

线性分式变换的组合也是线性分式变换: (𝐿0∘𝐿1)(𝑥)=𝐿0(𝐿1(𝑥))=𝑎0𝑎1𝑥+𝑏1𝑐1𝑥+𝑑1+𝑏0𝑐0𝑎1𝑥+𝑏1𝑐1𝑥+𝑑1+𝑑0=(𝑎0𝑎1+𝑏0𝑐1)𝑥+(𝑎0𝑏1+𝑏0𝑑1)(𝑐0𝑎1+𝑑0𝑐1)𝑥+(𝑐0𝑏1+𝑑0𝑑1)(L0​∘L1​)(x)=L0​(L1​(x))=c0​c1​x+d1​a1​x+b1​​+d0​a0​c1​x+d1​a1​x+b1​​+b0​​=(c0​a1​+d0​c1​)x+(c0​b1​+d0​d1​)(a0​a1​+b0​c1​)x+(a0​b1​+b0​d1​)​

逆变换

线性分式变换的逆也是线性分式变换: 𝑦=𝑎𝑥+𝑏𝑐𝑥+𝑑  ⟺  𝑦(𝑐𝑥+𝑑)=𝑎𝑥+𝑏  ⟺  𝑥=−𝑑𝑦−𝑏𝑐𝑦−𝑎y=cx+dax+b​⟺y(cx+d)=ax+b⟺x=−cy−ady−b​

连分数的应用

求解佩尔方程

佩尔方程形如 𝑥2−𝑑𝑦2=1x2−dy2=1 的解可以通过循环连分数来求解。具体步骤包括表示 𝑑d​ 为连分数,并利用其循环部分找到最小整数解。

数值逼近

循环连分数提供了逼近无理数的有效方法。在计算机科学和数值分析中,通过截断循环连分数,可以得到非常精确的无理数近似。

ACM-ICPC中的应用

在ACM-ICPC竞赛中,循环连分数常用于设计高效算法解决复杂的数论问题。例如,处理大整数的分解、二次同余方程等问题时,利用循环连分数的性质可以显著提高算法效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值