小学五年级奥数 第十四讲 质数 合数 分解质因数
一、质数的定义
质数,也称素数,是指在大于1的自然数中,除了1和它本身,没有其他因数的数。简单来说,质数只能被1和它本身整除。例如,2、3、5、7、11、13等都是质数。
1. 质数的特点
- 质数只能有两个因数:1和它本身。
- 质数必须大于1。
- 数字2是唯一的偶质数,其他质数都是奇数。
二、合数的定义
合数是指在大于1的自然数中,除了1和它本身,还有其他因数的数。也就是说,合数可以被1和它本身之外的数整除。例如,4、6、8、9、10等都是合数。
1. 合数的特点
- 合数有两个以上的因数。
- 合数可以是偶数也可以是奇数。
三、分解质因数
分解质因数是指将一个合数表示为几个质数相乘的形式。例如,将60分解质因数:60 = 2 × 2 × 3 × 5。
1. 分解质因数的方法
- 找出合数中最小的质因数。
- 用该质因数去除原合数,得到商。
- 对商继续进行质因数分解,直到商为1为止。
- 所有分解出的质因数相乘即为原合数。
2. 分解质因数的步骤
以分解72为例:
- 72可以被2整除,72 ÷ 2 = 36。
- 36可以被2整除,36 ÷ 2 = 18。
- 18可以被2整除,18 ÷ 2 = 9。
- 9可以被3整除,9 ÷ 3 = 3。
- 3是质数,所以停止分解。
所以,72 = 2 × 2 × 2 × 3 × 3。
四、质数与合数的应用
学习质数和合数的概念,有助于我们更好地理解数学的基本结构,在解决数学问题时,尤其是在约数和倍数的计算中,具有重要作用。掌握分解质因数的方法,可以帮助我们简化复杂的数值计算,提高运算效率。
五、总结
质数和合数是数学中重要的概念,通过学习和掌握质数、合数及分解质因数的方法,我们可以更好地进行数学运算,提高解决问题的能力。在奥数学习中,理解这些基本概念是进一步深入学习的基础。
第十四讲:质数 合数 分解质因数
读书使人明智,读书使人聪慧,演算使人精明,哲理使人深刻——培根。总之,知识能塑造人的性格。
◎点击目标
明方向
自然数中,除1与本身外,没有其他约数的数就是质数,质数又称为素数。2是最小的质数,也是唯一的一个偶质数。一个数如果除1与本身外还有其他的约数,那么,这个数就是合数。1既不是质数也不是合数。所以,自然数可以分为1、质数与合数这三类。
如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。质数合数是数论中最基本、最重要的概念之一,分解质因数是研究整除的一个重要方法,所以同学们必须掌握,且能灵活运用。
◎点击典例
学技巧(一)
王牌例1
有人说:“任何7个连续自然数中一定有质数。”请你举一个例子说明这句话是错的。(第一届“华罗庚杯”决赛题)
分析:题目要求我们具体找出7个连续的合数。中间夹着7个连续自然数的两个质数,其差一定大于7,所以只要找到差大于7的两个相邻质数即可。
解:质数89与97相邻,它们的差97-89=8>7,所以89与97之间任何7个连续自然数90,91,92,93,94,95,96全是合数,没有质数。所以“任何7个连续自然数中一定有质数”这句话是错误的。
特别指导:本例还可以这样解,任取7个连续的自然数,找出它们的一个公倍数,给它们各自加上这个公倍数,所得7个新数仍是连续的,并且原来的7个数分别是这7个数的约数,所以7个新数全是合数。若取数a=2×3×4×5×6×7×8,则a+2、a+3、a+4、a+5、a+6、a+7、a+8这7个数是连续的7个自然数,但这7个数都是合数。所以题中某人的说法是错误的。
王牌例2
找出1992所有的不同质因数,并求出它们的和。(小学奥数初赛试题)
分析:先把1992分解质因数,然后把不同质数相加,求出它们的和。
解:1992=2×2×2×3×83,所以1992所有不同的质因数有2、3、83。它们的和是:2+3+83=88。
特别指导:解题之道贵在简捷,本例通过分解,使该题解得干净利索。
王牌例3
有3张卡片,它们上面各写一个数字1、2、3,从中抽出1张、2张、3张,按任意次序排列出来,可以得到不同的一位数、两位数、三位数。(第二届“华罗庚杯”赛复赛试题)请你将其中的质数都写出来。
分析:此例可用分类法求解。
解:因为1、2、3三个数字之和是6,可知抽3张卡片时,无论按什么顺序排列后所得的三位数都能被3整除,所以它们都不是质数;从中任取2张卡片,按不同的顺序排列的两位数有:12、21、13、31、23、32,其中13、31和23是质数;从中任取1张卡片得到的一位数中2和3是质数。这样,所得到的质数有2、3、13、23和31共5个。
特别指导:1不是质数,偶数除2以外都不是质数,各位数字和是3的倍数时,除3以外都不是质数,这样很容易找到。
◎特别指导
王牌例4
将50这个数拆成10个质数的和,要求其中最大的质数尽可能大,那么这个最大的质数是几?
分析:本例若用“调频思维”找出最大的质数比较困难,但采用举例思维却非常简捷。
解:根据题意,要将50拆成10个质数的和,并且要求最大的质数尽可能大,那么其余9个质数当然应尽可能小。最小的质数是2,若其余9个质数全部是2,9个质数的和是(2×9=)18,50-18=32,32不是质数,32小1的31是质数,显然最大的质数是31,其余9个质数中8个质数都是2,另一个质数是3。2×8+3+31=50。故这个最大的质数是31。
特别指导:大凡解决一道难题,都不要被表面现象所迷惑,而要看清问题的实质。本例如一味追究把50以内的质数一一找出来,再进行搭配,使其和为50,那就走进了死胡同,很难得到正确的答案。
王牌例5
把20以内的质数分别填入□中(每个质数只许用一次):A□\frac{A}{□}□A,使A是整数,则A的最大值是多少?(“希望杯”数学竞赛试题)
分析:此例如果把8个质数轮流放一个在分母上,其余7个填到分子中,逐一计算,再作比较,那就太麻烦了。式中的分子是7个质数的和,20以内的质数共有8个,先从整体上考虑这8个质数的和:2+3+5+7+11+13+17+19=77,再考虑A与8个质数之和(77)的关系,则可得如下解法。
解:设分母的质数为x,则A=77x\frac{77}{x}x77。要使A是整数,x只能是77的质因数,故x只能是7或11。要使分数值A最大,x应取7。这时A的最大值是777=11\frac{77}{7}=11777=11。
特别指导:本例中分子、分母的关系有一定的要求,所以就采用了比较特殊的方法——整体思维法,它比用常规方法解更简便。
王牌例6
504乘以自然数a,得到一个平方数(即等于某自然数的平方),求a的最小值和这个平方数。
分析:因为一个平方数所含有每种质因数的个数为偶数(例如,6²=36,36=2×2×3×3,2和3的个数都是偶数),所以,只要把504分解质因数,把不是偶数个的质因数补上一个,就能求得a的最小值,也就能求出这个平方数。
解:504=2³×3²×7,a=2×7=14,23×32×72=70562³×3²×7²=705623×32×72=7056。答:a的最小值是14,这个平方数是7056。
特别指导:这道题利用一个平方数分解质因数后,各个质因数的指数都是偶数来解答,很快就可找到答案。
王牌例7
720的约数有多少个?
分析:当然可以先将720的约数一一写出,再数一数它的约数个数,这显然不是恰当的方法。
解:先把720分解质因数,720=2×2×2×2×3×3×5,这个式子可以写成720=2⁴×3²×5,其中2⁴表示4个2连续相乘,这里的4叫指数;3²表示2个3相乘,这里的指数是2;5表示1个5,可以写成5¹,这里的指数是1。从2⁴来分析,它有1、2、2²、2³、2⁴五种约数的情况。从3²来分析,它有1、3、3²三种约数的情况。从5¹来分析,它有1、5两种约数的情况。根据乘法原理,720共有(5×3×2=)30个约数,即720的约数个数=(4+1)×(2+1)×(1+1)=30(个)。所以720的约数有30个。
特别指导:由本例可以得出求约数个数的一个重要结论:一个大于1的整数的约数个数,等于它的质因数分解式中每个质因数的个数(指数)加1的连乘积。
◎实弹射击
显本领(一)
基础巩固
- 两个质数的和是50,求这两个质数的乘积的最大值是多少?
- 1×2×3×4×…×19×20能否被6435整除?
- 3个质数的和是80,这3个质数的积最大是多少?
能力提升
- 4个连续自然数的积是1680,则这4个自然数中,最小的是几?
- 用1、2、3、4、5、6、7、8、9这9个数字组成质数,如果每个数字都要用到,并且只能用一次,那么这9个数字最多能组成多少个质数?
- 要使4个数的积175×72×225×□的结果的最后六位数都是零,问□中的数最小填入几?
挑战极限
- 将下面8个数分成两组(每组4个数),应该怎么分才能保证两组4个数的乘积相等?1.40.333.50.30.750.3914.316.9
- 有3个小朋友,他们的年龄恰好一个比一个大1岁,他们年龄之积为2184,3个小朋友的年龄各是多少?
- 一个整数a与1080的乘积是一个完全平方数。求a的最小值与这个平方数。
◎点击典例
学技巧(二)
王牌例10
将14、33、35、30、75、39、143、169这8个数平均分成两组使这两组乘积相等,怎样分?
分析:由题意知,用分解质因数方法求解。
解:先将各数分解质因数:30=2×3×5,35=5×7,33=3×11,14=2×7,169=13×13,143=11×13,39=3×13,75=3×5×5。
特别指导:其中质因数3,5、13各4个,质因数2质因数3.513在分组时应其数分摊在两个组内,即每组中应有同一个数5故分务2个2质数分于其中有两个5和两个13属于同一个数,故分时应先考地,得到如下两个组:[35(5×7),75(3×5×5),30(2×3×5),14(2×7)]和[143(11×13),169(13×13),39(3×13),33(3×11)]。
解:分成的两个组为 75、14、169、33和30、35、143、39。或 75、14、143、39 和35、30、169、33。
特别指导:将8个不同的数分成两组,使两组数的积相等,则两组数经分解质因数后,质因数应完全相同。
王牌例11
要使145×32×20×□积的末五位数都是0,□里填入的自然数的最小值是多少?
分析:这道题若用硬乘的方法算出它们的积来,再计算末尾零的个数,显然是非常费力的,下面介绍一种简便方法。
解:将145、32、20分解质因数。145=29×5,32=2×2×2×2×2,20=2×2×5。观察发现3个数中共有7个2,2个5,则它们的连乘积的末尾只有两个零。要使末尾的5个数都是0,只需再乘(5×5×5=)125,因此,在括号里应填的最小值为125。
特别指导:因为所有的质因数中,只有2与5相乘积的末尾有零和5有一个家,因此只需看这个连乘积的质因数分解中共有有零和5,问题就能解决。
王牌例12
陈虎是个中学生,他说:“这次考试(百分制),我的名次乘我的年龄再乘我的考试分数,结果是2910。”你能算出陈虎的名次年龄与他这次考试的分数吗?
分析:陈虎的名次×陈虎的年龄×考试分数=2910,可以看出陈虎的名次、陈虎的年龄与考试分数都是2910的数。
解:因为2910=2×3×5×97,显然,97是他的考试分数。2×3×5必须转化成两个数相乘的形式,即“名次×年龄数。有以下几种:6×5、3×10、2×15。由于题目中已点明陈虎是中学生,所以选择第三种:陈虎15岁,考试名次是第2名。
答:陈虎15岁,考试名次是第2名,考试成绩是97分。
特别指导:解此类题关键是要考虑到符合生活实际。
王牌例13
有4个小朋友,他们的年龄一个比一个大1岁,年龄相乘的积是360。问其中年龄最大的是几岁?
分析:要求年龄最大的是几岁,应先求这4个小朋友各几岁。由题意知,他们的年龄是4个连续的自然数且都是360的因数,所以可用分解质因数的方法解答。
解:360=2×2×2×3×3×5=3×4×5×6。答:4名小朋友中年龄最大的是6岁。
特别指导:通过分解和组合,并运用了调频思维,使问题获得解决。
王牌例14
用216元去买一种钢笔,正好将钱用完。如果每支钢笔便宜1元,则可以多买3支钢笔,钱也正好用完。共买了多少支钢笔?
分析:根据题意可知:“单价×钢笔支数=216”,可先将216分解质因数,再转化成两个数相乘的形式,根据条件求解。
解:216=2×2×2×3×3×3=8×27=9×24。如 钢笔9元1支可买24支;如果8元1支,同可买27支,27-24=3支,符合题意。故共买了9元1支的钢笔24支。答:共买了9元1支的钢笔24支。
特别指导:此例用逆向思维使问题迎刃而解。
王牌例15
已知三位数abc是一个质数,如果将这个三位数重复写一遍,就得到一个六位数abcabc,问这个六位数一共有多少个不同的约数?
分析:本例的关键是如何将六位数abcabc写成质因数分解的形式再根据求约数个数的一个重要结论:一个大于1的整数的约数个数,等它的质因数分解式中每个质因数的个数(指数)加1的连乘积。
解:abcabc =1001×abc =7×11×13×abc,根据题意,abc是质数所以上式就是abcabc的质因数分解式,因此abcabc的不同约数的个数有(1+1)×(1+1)×(1+1)×(1+1)=16(个)。
答:这个六位数一共有16个不同的约数。
特别指导:此例是将一个自然数表示成它的质因数分解式的形式,再利用这个分解式求解,这是很常用的方法。
王牌例16
把1、2、3、4、5、6、7、8、9填进下面算式的方框内(每个数字都要用到),使等式成立:□×□=5568。
分析:先将5568分解质因数,再分析。因为5568=2⁶×3×29,所以,5568写成两个两位数的积有两种情况:64×87,58×96。如果取64×87,则5568的两位数约数只能取12、32、29,这时5568=12×464=32×174=29×192,其中有重复数字,不符合题意。如果取58×96,则5568的两位数约数只能取32,可得:174×32=58×96=5568。
解:174×32=58×96=5568。
特别指导:此例用淘汰法求解干净利索。