11.4 对面积的曲面积分

 

11.4 对面积的曲面积分

第四节 对面积的曲面积分

一、对面积的曲面积分的概念与性质

在本章第一节第一目的质量问题中,如果将曲线改为曲面,并相应地将线密度 μ(x,y)\mu(x,y)μ(x,y) 改为面密度 μ(x,y,z)\mu(x,y,z)μ(x,y,z),将小段曲线的弧长 Δs\Delta sΔs 改为小块曲面的面积 ΔS\Delta SΔS,而将第 iii 小段曲线上的一点 (ξi,ηi)(\xi_i, \eta_i)(ξi​,ηi​) 改为第 iii 小块曲面上的一点 (xi,yi,zi)(x_i, y_i, z_i)(xi​,yi​,zi​),那么,在面密度 μ(x,y,z)\mu(x,y,z)μ(x,y,z) 连续的前提下,所求的质量 mmm 就是下列和的极限: 其中 λ\lambdaλ 表示 nnn 小块曲面的直径的最大值。

这样的极限还会在其他问题中遇到。抽去它们的具体意义,就得出对面积的曲面积分的概念。

定义

如果当各小块曲面的直径的最大值 λ→0\lambda \to 0λ→0 时,这和的极限总存在,且与曲面 Σ\SigmaΣ 的分法及点 (xi,yi,zi)(x_i, y_i, z_i)(xi​,yi​,zi​) 的取法无关,那么称此极限为函数 f(x,y,z)f(x,y,z)f(x,y,z) 在曲面 Σ\SigmaΣ 上对面积的曲面积分或第一类曲面积分,记作:

其中 f(x,y,z)f(x,y,z)f(x,y,z) 叫做被积函数,Σ\SigmaΣ 叫做积分曲面。

我们指出,当 f(x,y,z)f(x,y,z)f(x,y,z) 在光滑曲面 Σ\SigmaΣ 上连续时,对面积的曲面积分是存在的。今后总假定 f(x,y,z)f(x,y,z)f(x,y,z) 在 Σ\SigmaΣ 上连续。

根据上述定义,面密度为连续函数 μ(x,y,z)\mu(x,y,z)μ(x,y,z) 的光滑曲面 Σ\SigmaΣ 的质量 mmm 可表示为 μ(x,y,z)\mu(x,y,z)μ(x,y,z) 在 Σ\SigmaΣ 上对面积的曲面积分:

由对面积的曲面积分的定义可知,它具有与对弧长的曲线积分相类似的性质,这里不再赘述。

 

二、对面积的曲面积分的计算法

设积分曲面 ∑ 由方程 z=z(x,y)z = z(x,y)z=z(x,y) 给出,∑ 在 x0yx0yx0y 面上的投影区域为 DDD (见图 11-19)。函数 z=z(x,y)z = z(x,y)z=z(x,y) 在 DDD 上具有连续偏导数,被积函数 f(x,y,z)f(x,y,z)f(x,y,z) 在 ∑ 上连续。

根据对面积的曲面积分的定义,有:

设 ∑ 上第 iii 小块曲面 ΔSi\Delta S_iΔSi​(它的面积也记作 ΔSi\Delta S_iΔSi​)在 x0yx0yx0y 面上的投影区域为 Δσi\Delta \sigma_iΔσi​(它的面积也记作 Δσi\Delta \sigma_iΔσi​),则上式中的 ΔSi\Delta S_iΔSi​ 可表示为二重积分:

利用二重积分的中值定理,上式又可写成:​ 其中 (ξi,ηi)(\xi_i, \eta_i)(ξi​,ηi​) 是小闭区域 Δσi\Delta \sigma_iΔσi​ 上的一点。由于 (ξi,ηi,z(ξi,ηi))(\xi_i, \eta_i, z(\xi_i, \eta_i))(ξi​,ηi​,z(ξi​,ηi​)) 是 ∑ 上的一点,因此 ξi=z(ξi,ηi)\xi_i = z(\xi_i, \eta_i)ξi​=z(ξi​,ηi​),这里 (ξi,ηi,0)(\xi_i, \eta_i, 0)(ξi​,ηi​,0) 也是小闭区域 Δσi\Delta \sigma_iΔσi​ 上的点。

因此:

由于函数 f(x,y,z(x,y))f(x,y,z(x,y))f(x,y,z(x,y)) 以及函数 1+(∂z∂x)2+(∂z∂y)2\sqrt{1 + \left( \frac{\partial z}{\partial x} \right)^2 + \left( \frac{\partial z}{\partial y} \right)^2}1+(∂x∂z​)2+(∂y∂z​)2​ 都在闭区域 DDD 上连续,可以证明,当 λ→0\lambda \to 0λ→0 时,上式右端的极限与

的极限相等。这个极限在本目开始所给的条件下是存在的,它等于二重积分:

因此左端的极限即曲面积分:

这就是把对面积的曲面积分化为二重积分的公式。这个公式是容易记忆的,因为曲面 ∑ 的方程是 z=z(x,y)z = z(x,y)z=z(x,y),而曲面积分记号中的 dSdSdS 就是:

在计算时,只要把变量 zzz 换为 z(x,y)z(x,y)z(x,y),dSdSdS 换为 1+(∂z∂x)2+(∂z∂y)2 dx dy\sqrt{1 + \left( \frac{\partial z}{\partial x} \right)^2 + \left( \frac{\partial z}{\partial y} \right)^2} \, dx \, dy1+(∂x∂z​)2+(∂y∂z​)2​dxdy,再确定 ∑ 在 x0yx0yx0y 面上的投影区域 DDD,这样就把对面积的曲面积分化为二重积分了。

如果积分曲面 ∑ 由方程 x=x(y,z)x = x(y,z)x=x(y,z) 或 y=y(z,x)y = y(z,x)y=y(z,x) 给出,也可以类似地把对面积的曲面积分化为相应的二重积分。

 

 

例1:计算曲面积分

问题描述

  1. 确定曲面方程和投影区域

    曲面 ∑ 的方程为:

    ∑ 在 xyxyxy 面上的投影区域 DDD 为圆形闭区域:

  2. 计算

    计算导数:

    于是:

  3. 根据公式 (4-2),有:

  4. 利用极坐标计算积分

例2:计算 ∬Σxyz dS\iint_{\Sigma} xyz \, dS∬Σ​xyzdS

问题描述

设 ∑ 是由平面 x=0x = 0x=0,y=0y = 0y=0,z=0z = 0z=0 及 x+y+z=1x + y + z = 1x+y+z=1 所围成的四面体的整个边界曲面(见图 11-21)。计算曲面积分:

  1. 分片计算

    整个边界曲面 ∑ 在平面 x=0x = 0x=0、y=0y = 0y=0、z=0z = 0z=0 及 x+y+z=1x + y + z = 1x+y+z=1 上的部分依次记为 ∑_1、∑_2、∑_3 及 ∑_4,于是:

    在 ∑_1、∑_2、∑_3 上,被积函数 f(x,y,z)=xyzf(x,y,z) = xyzf(x,y,z)=xyz 均为零,所以:

  2. 计算 ∑_4 的积分

    在 ∑_4 上,z=1−x−yz = 1 - x - yz=1−x−y,所以:

    从而:

    其中 DDD 是 ∑_4 在 x0yx0yx0y 面上的投影区域,即由直线 x=0x = 0x=0、y=0y = 0y=0 及 x+y=1x + y = 1x+y=1 所围成的闭区域。

  3. 计算二重积分

    首先对 xxx 积分:

    再对 yyy 积分:

    计算后得到结果:

综上,计算结果为:

通过以上两个例子,我们可以看到对面积的曲面积分的计算过程。首先确定曲面方程和投影区域,然后利用公式将曲面积分化为二重积分,再通过适当的坐标变换(如极坐标)进行积分计算。这种方法不仅简化了计算过程,还帮助我们更好地理解和应用曲面积分。

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值