11.5 对坐标的曲面积分
一、对坐标的曲面积分的概念与性质
我们对曲面作一些说明,这里假定曲面是光滑的。通常我们遇到的曲面都是双侧的。例如由方程 z=z(x,y)z = z(x, y)z=z(x,y) 表示的曲面,有上侧与下侧之分;又例如,一张包围某一空间区域的闭曲面,有外侧与内侧之分。以后我们总假定所考虑的曲面是双侧的。
在讨论对坐标的曲面积分时,需要指定曲面的侧。我们可以通过曲面上法向量的指向来定出曲面的侧。例如,对于曲面 z=z(x,y)z = z(x, y)z=z(x,y),如果取它的法向量 nnn 的指向朝上,我们就认为取定曲面的上侧;又如,对于闭曲面如果取它的法向量的指向朝外,我们就认为取定曲面的外侧。这种取定了法向量亦即选定了侧的曲面,就称为有向曲面。
设 Σ\SigmaΣ 是有向曲面。在 Σ\SigmaΣ 上取一小块曲面 ΔS\Delta SΔS,把 ΔS\Delta SΔS 投影到 xOyxOyxOy 面上得一投影区域,这投影区域的面积记为 (ΔS)xy(\Delta S)_{xy}(ΔS)xy。假定 ΔS\Delta SΔS 上各点处的法向量与 zzz 轴的夹角 γ\gammaγ 的余弦 cosγ\cos \gammacosγ 有相同的符号(即 cosγ\cos \gammacosγ 都是正的或都是负的)。我们规定 ΔS\Delta SΔS 在 xOyxOyxOy 面上的投影 (ΔS)xy(\Delta S)_{xy}(ΔS)xy 为:
其中 cosγ=0\cos \gamma = 0cosγ=0 时 (ΔS)xy=0(\Delta S)_{xy} = 0(ΔS)xy=0。ΔS\Delta SΔS 在 xOyxOyxOy 面上的投影 (ΔS)xy(\Delta S)_{xy}(ΔS)xy 实际就是 ΔS\Delta SΔS 在 xOyxOyxOy 面上的投影区域的面积附以一定的正负号。类似地可以定义 ΔS\Delta SΔS 在 yOzyOzyOz 面及 zOxzOxzOx 面上的投影 (ΔS)yz(\Delta S)_{yz}(ΔS)yz 及 (ΔS)zx(\Delta S)_{zx}(ΔS)zx。
流向曲面一侧的流量
设稳定流动的不可压缩流体(假定密度为 1)的速度场由
给出,Σ\SigmaΣ 是速度场中的一片有向曲面,函数 P(x,y,z)P(x, y, z)P(x,y,z)、Q(x,y,z)Q(x, y, z)Q(x,y,z) 与 R(x,y,z)R(x, y, z)R(x,y,z) 都在 Σ\SigmaΣ 上连续,求在单位时间内流向 Σ\SigmaΣ 指定侧的流体的质量,即流量 Φ\PhiΦ。
如果流体流过平面上面积为 AAA 的一个闭区域,且流体在这闭区域上各点处的流速为(常向量)v\mathbf{v}v,又设 n\mathbf{n}n 为该平面的单位法向量,那么在单位时间内流过这闭区域的流体组成一个底面积为 AAA、斜高为 ∣v∣|\mathbf{v}|∣v∣ 的斜柱体。
由于现在所考虑的不是平面闭区域而是一片曲面,且流速 v\mathbf{v}v 也不是常向量,因此所求流量不能直接用上述方法计算。然而过去在引出各类积分概念的例子中一再使用过的方法,也可用来解决目前的问题。
把曲面 Σ\SigmaΣ 分成 nnn 小块 ΔSi\Delta S_iΔSi(ΔSi\Delta S_iΔSi 同时也代表第 iii 小块曲面的面积)。在 Σ\SigmaΣ 是光滑的和 v\mathbf{v}v 是连续的前提下,只要 ΔSi\Delta S_iΔSi 的直径很小,我们就可以用 ΔSi\Delta S_iΔSi 上任意一点 (ξi,ηi,ζi)(\xi_i, \eta_i, \zeta_i)(ξi,ηi,ζi) 处的流速
代替 ΔSi\Delta S_iΔSi 上其他各点处的流速,以该点 (ξi,ηi,ζi)(\xi_i, \eta_i, \zeta_i)(ξi,ηi,ζi) 处曲面 Σ\SigmaΣ 的单位法向量
代替 ΔSi\Delta S_iΔSi 上其他各点处的单位法向量,从而得到通过 ΔSi\Delta S_iΔSi 流向指定侧的流量的近似值为:
于是,通过 Σ\SigmaΣ 流向指定侧的流量:
当各小块曲面的直径的最大值 λ→0\lambda \rightarrow 0λ→0 取上述和的极限,就得到流量 Φ\PhiΦ 的精确值。这样的极限还会在其他问题中遇到。抽去它们的具体意义,就得出下列对坐标的曲面积分的概念:
定义
设 Σ\SigmaΣ 为光滑的有向曲面,函数 R(x,y,z)R(x, y, z)R(x,y,z) 在 Σ\SigmaΣ 上有界。把 Σ\SigmaΣ 任意分成 nnn 块小曲面 ΔSi\Delta S_iΔSi(ΔSi\Delta S_iΔSi 同时又表示第 iii 块小曲面的面积),ΔSi\Delta S_iΔSi 在 xOyxOyxOy 面上的投影为 (ΔSi)xy(\Delta S_i)_{xy}(ΔSi)xy,(ξi,ηi,ζi)(\xi_i, \eta_i, \zeta_i)(ξi,ηi,ζi) 是 ΔSi\Delta S_iΔSi 上任意取定的一点,作乘积 R(ξi,ηi,ζi)(ΔSi)xyR(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{xy}R(ξi,ηi,ζi)(ΔSi)xy,
如果当各小块曲面的直径的最大值 λ→0\lambda \rightarrow 0λ→0 时,这和的极限总存在,且与曲面 Σ\SigmaΣ 的分法及点 (ξi,ηi,ζi)(\xi_i, \eta_i, \zeta_i)(ξi,ηi,ζi) 的取法无关,那么称此极限为函数 R(x,y,z)R(x, y, z)R(x,y,z) 在有向曲面 Σ\SigmaΣ 上对坐标 x,yx, yx,y 的曲面积分,记作:
即:
其中 R(x,y,z)R(x, y, z)R(x,y,z) 叫做被积函数,Σ\SigmaΣ 叫做积分曲面。
类似地可以定义函数 P(x,y,z)P(x, y, z)P(x,y,z) 在有向曲面 Σ\SigmaΣ 上对坐标 y,zy, zy,z 的曲面积分
以上三个曲面积分也称为第二类曲面积分。
我们指出,当 P(x,y,z)P(x, y, z)P(x,y,z)、Q(x,y,z)Q(x, y, z)Q(x,y,z) 与 R(x,y,z)R(x, y, z)R(x,y,z) 在有向光滑曲面 Σ\SigmaΣ 上连续时,对坐标的曲面积分是存在的,以后总假定 PPP、QQQ 与 RRR 在 Σ\SigmaΣ 上连续。
在应用上出现较多的是:
这种合并起来的形式。为简便起见,我们把它写成:
例如,上述流向 Σ\SigmaΣ 指定侧的流量 Φ\PhiΦ 可表示为:
如果 Σ\SigmaΣ 是分片光滑的有向曲面,我们规定函数在 Σ\SigmaΣ 上对坐标的曲面积分等于函数在各片光滑曲面上对坐标的曲面积分之和。
对坐标的曲面积分具有与对坐标的曲线积分相类似的一些性质。例如:
- 如果把 Σ\SigmaΣ 分成 Σ1\Sigma_1Σ1 和 Σ2\Sigma_2Σ2,那么:
- 设 Σ\SigmaΣ 是有向曲面,−Σ-\Sigma−Σ 表示与 Σ\SigmaΣ 取相反侧的有向曲面,则:
这些式子表示,当积分曲面改变为相反侧时,对坐标的曲面积分要改变符号。因此关于对坐标的曲面积分,我们必须注意积分曲面所取的侧。这些性质的证明从略。
二、对坐标的曲面积分的计算法
设积分曲面 Σ\SigmaΣ 是由方程 z=z(x,y)z = z(x, y)z=z(x,y) 所给出的曲面上侧,Σ\SigmaΣ 在 xOyxOyxOy 面上的投影区域为 DxyD_{xy}Dxy,函数 z=z(x,y)z = z(x, y)z=z(x,y) 在 DxyD_{xy}Dxy 上具有一阶连续偏导数,被积函数 R(x,y,z)R(x, y, z)R(x,y,z) 在 Σ\SigmaΣ 上连续。
按对坐标的曲面积分的定义,有:
因为 Σ\SigmaΣ 取上侧,cosγ>0\cos \gamma > 0cosγ>0,所以 (ΔSi)xy=(ΔSi)xy(\Delta S_i)_{xy} = (\Delta S_i)_{xy}(ΔSi)xy=(ΔSi)xy。又因 (ξi,ηi,ζi)(\xi_i, \eta_i, \zeta_i)(ξi,ηi,ζi) 是 Σ\SigmaΣ 上的一点,故 ζi=z(ξi,ηi)\zeta_i = z(\xi_i, \eta_i)ζi=z(ξi,ηi)。从而有:
令各小块曲面的直径的最大值 λ→0\lambda \to 0λ→0,取上式两端的极限,就得到:
这就是把对坐标的曲面积分化为二重积分的公式。公式表明,计算曲面 ∬ΣR(x,y,z) dx dy\iint_\Sigma R(x, y, z) \, dx \, dy∬ΣR(x,y,z)dxdy 时,只需将其中变量 zzz 换为表示 Σ\SigmaΣ 的函数 z(x,y)z(x, y)z(x,y),然后在积分 Σ\SigmaΣ 的投影区域 DxyD_{xy}Dxy 上计算二重积分即可。
必须注意,公式的曲面积分是取在曲面 Σ\SigmaΣ 上侧的,如果曲面积分取在 Σ\SigmaΣ 的下侧,这时 cosγ<0\cos \gamma < 0cosγ<0,那么:
从而有:
类似地,如果 Σ\SigmaΣ 由 x=x(y,z)x = x(y, z)x=x(y,z) 给出,那么有:
等式右端的符号这样决定:积分曲面 Σ\SigmaΣ 是由方程 x=x(y,z)x = x(y, z)x=x(y,z) 所给出的曲面前侧,即 cosα>0\cos \alpha > 0cosα>0,应取正号;反之,Σ\SigmaΣ 取后侧,即 cosα<0\cos \alpha < 0cosα<0,应取负号。
如果 Σ\SigmaΣ 由 y=y(z,x)y = y(z, x)y=y(z,x) 给出,那么有:
等式右端的符号这样决定:积分曲面 Σ\SigmaΣ 是由方程 y=y(z,x)y = y(z, x)y=y(z,x) 所给出的曲面右侧,即 cosβ>0\cos \beta > 0cosβ>0,应取正号;反之,Σ\SigmaΣ 取左侧,即 cosβ<0\cos \beta < 0cosβ<0,应取负号。
例1 计算曲面积分
计算曲面积分:
解:把有向曲面 Σ\SigmaΣ 分成以下六部分:
除 Σ1\Sigma_1Σ1 和 Σ2\Sigma_2Σ2 外,其余四片曲面在 yOzyOzyOz 面上的投影为零,因此:
应用公式就有:
于是所求曲面积分为:
类似地可得:
于是所求曲面积分为:
例2 计算曲面积分
计算曲面积分:
解:把 Σ\SigmaΣ 分为 Σ1\Sigma_1Σ1 和 Σ2\Sigma_2Σ2 两部分,Σ1\Sigma_1Σ1 的方程为:
Σ2\Sigma_2Σ2 的方程为:
于是:
上式右端的第一个积分的积分曲面 Σ1\Sigma_1Σ1 取上侧,第二个积分的积分曲面 Σ2\Sigma_2Σ2 取下侧,因此分别应用公式,就有:
利用三角恒等式,得到:
从而:
因此,所求曲面积分为:
三、两类曲面积分之间的联系
设有向曲面 Σ\SigmaΣ 由方程 z=z(x,y)z = z(x, y)z=z(x,y) 给出,Σ\SigmaΣ 在 xOyxOyxOy 面上的投影区域为 DxyD_{xy}Dxy,函数 z=z(x,y)z = z(x, y)z=z(x,y) 在 DxyD_{xy}Dxy 上具有一阶连续偏导数,R(x,y,z)R(x, y, z)R(x,y,z) 在 Σ\SigmaΣ 上连续。如果 Σ\SigmaΣ 取上侧,那么由对坐标的曲面积分计算公式有:
另一方面,因上述有向曲面 Σ\SigmaΣ 的法向量的方向余弦为:
故由对面积的曲面积分计算公式有:
由此可见,有:
如果 Σ\SigmaΣ 取下侧,那么由相应公式有:
但这时:
因此,上述公式仍成立。
类似地可推得:
合并上述三式,得两类曲面积分之间的如下联系:
其中 cosα\cos \alphacosα、cosβ\cos \betacosβ 与 cosγ\cos \gammacosγ 是有向曲面 Σ\SigmaΣ 在点 (x,y,z)(x, y, z)(x,y,z) 处的法向量的方向余弦。两类曲面积分之间的联系也可写成如下的向量形式:
其中 A=(P,Q,R)\mathbf{A} = (P, Q, R)A=(P,Q,R),n=(cosα,cosβ,cosγ)\mathbf{n} = (\cos \alpha, \cos \beta, \cos \gamma)n=(cosα,cosβ,cosγ) 为有向曲面 Σ\SigmaΣ 在点 (x,y,z)(x, y, z)(x,y,z) 处的单位法向量,dS=n dS=(dy dz,dz dx,dx dy)d\mathbf{S} = \mathbf{n} \, dS = (dy \, dz, dz \, dx, dx \, dy)dS=ndS=(dydz,dzdx,dxdy) 称为有向曲面元,A⋅n\mathbf{A} \cdot \mathbf{n}A⋅n 为向量 A\mathbf{A}A 在向量 n\mathbf{n}n 上的投影。
例3 计算曲面积分
计算曲面积分:
其中 Σ\SigmaΣ 是旋转抛物面 z=x2+y2z = x^2 + y^2z=x2+y2 介于平面 z=0z = 0z=0 及 z=2z = 2z=2 之间的部分的下侧。
解:由两类曲面积分之间的联系,有:
在曲面 Σ\SigmaΣ 上,有:
故:
再按对坐标的曲面积分的计算法,便得:
其中 DxyD_{xy}Dxy 是 Σ\SigmaΣ 在 xOyxOyxOy 面上的投影区域。利用极坐标计算这个二重积分如下:
注意到:
则有:
故:
从而: