11.7 斯托克斯公式 *环流量与旋度

第七节 斯托克斯公式:环流量与旋度

一、斯托克斯公式

斯托克斯 (Stokes) 公式是格林公式的推广。格林公式表达了平面闭区域上的二重积分与其边界曲线上的曲线积分间的关系,而斯托克斯公式则把曲面∑上的曲面积分与沿着∑的边界曲线的曲线积分联系起来。这个联系可陈述如下:

定理1

设 C\mathbf{C}C 为分段光滑的空间有向闭曲线,Σ\SigmaΣ 是以 C\mathbf{C}C 为边界的分片光滑的有向曲面,C\mathbf{C}C 的正向与 Σ\SigmaΣ 的侧符合右手规则。如果函数 P(x,y,z)、Q(x,y,z)P(x,y,z)、Q(x,y,z)P(x,y,z)、Q(x,y,z) 与 R(x,y,z)R(x,y,z)R(x,y,z) 在曲面 Σ\SigmaΣ(连同边界 C\mathbf{C}C)上具有一阶连续偏导数,则有:

公式称为斯托克斯公式。

证明

先假定 Σ\SigmaΣ 与平行于 z 轴的直线相交不多于一点,并设 Σ\SigmaΣ 为曲面 z=f(x,y)z = f(x,y)z=f(x,y) 的上侧,Σ\SigmaΣ 的正向边界曲线 C\mathbf{C}C 在 xyxyxy 平面上的投影为平面有向曲线 C′\mathbf{C'}C′,C′\mathbf{C'}C′ 所围成的闭区域为 DDD。

我们设法把曲面积分

化为闭区域 DDD 上的二重积分,然后通过格林公式使它与曲线积分相联系。

根据对面积和对坐标的曲面积分间的关系,有:

由第九章第六节知道,有向曲面 Σ\SigmaΣ 的法向量的方向余弦为:

因此

把它代入上式得:

上式右端的曲面积分化为二重积分时,应把 P(x,y,z)P(x,y,z)P(x,y,z) 中的 zzz 用 f(x,y)f(x,y)f(x,y) 来代替。因为由复合函数的微分法,有:

所以,上式可写成:

根据格林公式,上式右端的二重积分可化为沿闭区域 DDD 的边界 C\mathbf{C}C 的曲线积分:

我们证得:

如果 Σ\SigmaΣ 取下侧,C\mathbf{C}C 也相应地改成相反的方向,那么上式两端同时改变符号,因此上式仍成立。

其次,如果曲面与平行于 z 轴的直线的交点多于一个,那么可作辅助曲线把曲面分成几部分,然后应用公式并相加。因为沿辅助曲线而方向相反的两个曲线积分相加时正好抵消,所以对于这一类曲面公式也成立。

同样可证:

把它们与上式相加即得斯托克斯公式。证毕。

为了便于记忆,利用行列式记号把斯托克斯公式写成:

这个行列式的展开正好是公式左端的被积表达式。

利用两类曲面积分间的联系,可得斯托克斯公式的另一形式:

其中 n=(cos⁡α,cos⁡β,cos⁡γ)\mathbf{n} = (\cos \alpha, \cos \beta, \cos \gamma)n=(cosα,cosβ,cosγ) 为有向曲面 Σ\SigmaΣ 在点 (x,y,z)(x, y, z)(x,y,z) 处的单位法向量。

如果 Σ\SigmaΣ 是 xyxyxy 面上的一块平面闭区域,斯托克斯公式就变成格林公式。因此,格林公式是斯托克斯公式的一种特殊情形。

例1:利用斯托克斯公式计算曲线积分

设:其中 C\mathbf{C}C 为平面 x+y+z=1x + y + z = 1x+y+z=1 被三个坐标面所截成的三角形的整个边界,它的正向与这个平面三角形 Σ\SigmaΣ 上侧的法向量之间符合右手规则。

曲面 Σ\SigmaΣ 的法向量 n\mathbf{n}n 可以通过曲面的方程 x+y+z=1x + y + z = 1x+y+z=1 的梯度得到:

将法向量单位化,得到

根据斯托克斯公式:

其中

计算旋度:

所以,曲线积分的值为零:

斯托克斯公式表明,向量场在空间曲线上的环流量与曲面上的旋度密切相关,这种联系在向量场理论和物理学中具有重要的应用。

二、空间曲线积分与路径无关的条件

在第三节中,利用格林公式推得了平面曲线积分与路径无关的条件。完全类似地,利用斯托克斯公式,可推得空间曲线积分与路径无关的条件。

首先我们指出,空间曲线积分与路径无关相当于沿任意闭曲线的曲线积分为零。关于空间曲线积分在什么条件下与路径无关的问题,有以下结论:

定理2

设空间区域 GGG 是一维单连通域,若函数 P(x,y,z)、Q(x,y,z)P(x,y,z)、Q(x,y,z)P(x,y,z)、Q(x,y,z) 与 R(x,y,z)R(x,y,z)R(x,y,z) 在 GGG 内具有一阶连续偏导数,则空间曲线积分

在 GGG 内与路径无关(或沿 GGG 内任意闭曲线的曲线积分为零)的充分必要条件是

在 GGG 内恒成立。

证明

如果等式在 GGG 内恒成立,那么由斯托克斯公式立即可看出,沿闭曲线的曲线积分为零,因此条件是充分的。

反之,设沿 GGG 内任意闭曲线的曲线积分为零,若 GGG 内有一点 M0M_0M0​ 使上述三个等式不完全成立,例如:

不妨假定

过点 M0(x0,y0,z0)M_0 (x_0, y_0, z_0)M0​(x0​,y0​,z0​) 作平面 z=z0z = z_0z=z0​,并在这个平面上取一个以 M0M_0M0​ 为圆心、半径足够小的圆形闭区域 KKK,使得在 KKK 上恒有

设 γ\gammaγ 是 KKK 的正向边界曲线,因为 zzz 在平面 z=z0z = z_0z=z0​ 上,所以按定义有

又由斯托克斯公式有

其中 σ\sigmaσ 是 KKK 的面积,因为

从而

这结果与假设矛盾,从而条件在 GGG 内恒成立,证毕。

应用定理2并仿照第三节定理3的证法,便可以得到:

定理3

设区域 GGG 是空间一维单连通区域,若函数 P(x,y,z)、Q(x,y,z)P(x,y,z)、Q(x,y,z)P(x,y,z)、Q(x,y,z) 与 R(x,y,z)R(x,y,z)R(x,y,z) 在 GGG 内具有一阶连续偏导数,则表达式

在 GGG 内成为某一函数 u(x,y,z)u(x,y,z)u(x,y,z) 的全微分的充分必要条件是上述等式在 GGG 内恒成立;当条件满足时,这个函数 u(x,y,z)u(x,y,z)u(x,y,z)(不计一个常数之差)可用下式求出:

或用定积分表示为:

其中 M0(x0,y0,z0)M_0(x_0,y_0,z_0)M0​(x0​,y0​,z0​) 为 GGG 内某一定点,点 M(x,y,z)∈GM(x,y,z) \in GM(x,y,z)∈G。

利用定理3和上面的公式,我们可以方便地判断一个空间曲线积分是否与路径无关,并且可以找到一个潜在的标量场 u(x,y,z)u(x,y,z)u(x,y,z)。这些结果在向量场理论和物理学中有广泛的应用。

 

三、环流量与旋度

设有向量场 其中函数 P、QP、QP、Q 与 RRR 均连续,C\mathbf{C}C 是 A\mathbf{A}A 的定义域内的一条分段光滑的有向闭曲线,t\mathbf{t}t 是 C\mathbf{C}C 在点 (x,y,z)(x,y,z)(x,y,z) 处的单位切向量,则积分 称为向量场 A\mathbf{A}A 沿有向闭曲线 C\mathbf{C}C 的环流量。

由两类曲线积分的关系,环流量又可表达为

于是

计算得到:

通过对各项积分求值:

类似于由向量场 A\mathbf{A}A 的通量可以引出向量场 A\mathbf{A}A 在一点的通量密度(即散度)一样,由向量场 A\mathbf{A}A 沿一闭曲线的环流量可引出向量场 A\mathbf{A}A 在一点的环量密度或旋度。它是一个向量,定义如下:

设有向量场 其中函数 P、QP、QP、Q 与 RRR 均具有一阶连续偏导数,则向量 称为向量场 A\mathbf{A}A 的旋度,记作

若向量场 A\mathbf{A}A 的旋度 rot A\text{rot} \, \mathbf{A}rotA 处处为零,则称向量场 A\mathbf{A}A 为无旋场。而一个无源且无旋的向量场称为调和场。调和场是物理学中另一类重要的向量场,这种场与调和函数有密切的关系。

例4:求例3中的向量场 A\mathbf{A}A 的旋度

解:

旋度计算:

设斯托克斯公式中的有向曲面 Σ\SigmaΣ 在点 (x,y,z)(x, y, z)(x,y,z) 处的单位法向量为

于是,斯托克斯公式可以写成下面的向量形式:

斯托克斯公式表示:向量场 A\mathbf{A}A 沿有向闭曲线 C\mathbf{C}C 的环流量等于向量场 A\mathbf{A}A 的旋度通过曲面 Σ\SigmaΣ 的通量,这里 C\mathbf{C}C 的正向与 Σ\SigmaΣ 的侧应符合右手规则。

旋度的物理意义

设有刚体绕定轴 lll 转动,角速度为 ω\mathbf{\omega}ω,MMM 为刚体内任意一点。在定轴 lll 上任取一点 OOO 为坐标原点,作空间直角坐标系,使 zzz 轴与定轴 lll 重合,则 ω=ωk\mathbf{\omega} = \omega \mathbf{k}ω=ωk,而点 MMM 可用向量 r=OM=(x,y,z)\mathbf{r} = \mathbf{OM} = (x, y, z)r=OM=(x,y,z) 来确定。由力学知道,点 MMM 的线速度 v\mathbf{v}v 可表示为 v=ω×r\mathbf{v} = \mathbf{\omega} \times \mathbf{r}v=ω×r。

由此有:

从速度场 v\mathbf{v}v 的旋度与旋转角速度的这个关系,可见“旋度”这一名词的由来。

 

 

  • 23
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值