计数排序是一个非基于比较的排序算法,该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。基本思想是:统计一个数序列中小于某个元素a的个数为n,则直接把该元素a放到第n+1个位置上。当然当过有几个元素相同时要做适当的调整,因为不能把所有的元素放到同一个位置上。计数排序假设输入的元素都是0到k之间的整数。原理如图所示(图引自http://www.cnblogs.com/kaituorensheng/archive/2013/02/23/2923877.html):
具体代码实现:
private static int[] countingSort(int[] array,int biggestCount) {
int[] resultArray = new int[array.length];//结果输出数组
int[] countArray = new int[biggestCount];//构造计数数组
for(int i=0;i<countArray.length;i++)
{
countArray[i] = 0;//初始化,虽然java数组默认的是整形,但是这是算法的一个步骤
}
for(int i=0;i<array.length;i++)
{
countArray[array[i]] = countArray[array[i]]+1;//统计0···biggestCount出现的次数
}
/******************第一种实现方式(保证了数组的稳定性)*********************/
for(int j=1;j<biggestCount;j++)
{
countArray[j] = countArray[j]+countArray[j-1];//统计每一个数在数组中的下标
}
for(int m = array.length-1;m>=0;m--)
{
resultArray[countArray[array[m]]-1] = array[m];//找到这个数应该在的位置,并且把这个值放在正确的位置上!
countArray[array[m]] = countArray[array[m]]-1;//出现一次需要减一,相当于再出现相同的数时该数在数组中的下标向前移动一位
}
/******************第二种实现方式(不能保证数组的稳定性)*********************/
/*int index=0;
for(int i=0;i<biggestCount;i++)
{
while(countArray[i]>0)
{
resultArray[index]=i;
index++;
countArray[i] = countArray[i]-1;
}
}*/
return resultArray;
}
完整代码:
package com.tangbo;
import java.util.Random;
import java.util.Scanner;
public class CountingSort {
static Scanner scanner;
static Random random = new Random();
static int biggestNum = 25;
public static void main(String[] args) {
int[] array = productArray();
print(countingSort(array, biggestNum));
}
private static int[] countingSort(int[] array,int biggestCount) {
int[] resultArray = new int[array.length];//结果输出数组
int[] countArray = new int[biggestCount];//构造计数数组
for(int i=0;i<countArray.length;i++)
{
countArray[i] = 0;//初始化,虽然java数组默认的是整形,但是这是算法的一个步骤
}
for(int i=0;i<array.length;i++)
{
countArray[array[i]] = countArray[array[i]]+1;//统计0···biggestCount出现的次数
}
/******************第一种实现方式(保证了数组的稳定性)*********************/
for(int j=1;j<biggestCount;j++)
{
countArray[j] = countArray[j]+countArray[j-1];//统计每一个数在数组中的下标
}
for(int m = array.length-1;m>=0;m--)
{
resultArray[countArray[array[m]]-1] = array[m];//找到这个数应该在的位置,并且把这个值放在正确的位置上!
countArray[array[m]] = countArray[array[m]]-1;//出现一次需要减一,相当于再出现相同的数时该数在数组中的下标向前移动一位
}
/******************第二种实现方式(不能保证数组的稳定性)*********************/
/*int index=0;
for(int i=0;i<biggestCount;i++)
{
while(countArray[i]>0)
{
resultArray[index]=i;
index++;
countArray[i] = countArray[i]-1;
}
}*/
return resultArray;
}
static void print(int []array)//打印函数
{
for(int i=0;i<array.length;i++)
{
System.out.print(array[i]+" ");
}
System.out.println();
}
static int [] productArray()//生成一个数组
{
int arrayayLength=0;
System.out.println("请输入数组长度:");
scanner = new Scanner(System.in);
arrayayLength = scanner.nextInt();
int [] arrayayTemp = new int[arrayayLength];
for (int i = 0; i < arrayayLength; i++) {
arrayayTemp[i]=random.nextInt(biggestNum);
System.out.print(arrayayTemp[i]+" ");
}
System.out.println();
return arrayayTemp;
}
}