题意:
有一根长度为L(L<1000)的木棍,还有n(n<50)个切割点的位置(从小到大排序)。要求在这些切割点的位置处把棍子切成n+1部分,使得切割总费用最小。每次切割的费用等与被切割木棍的长度。
思路:
设d(i,j)为切割小木棍i~j的最小费用,则d(i,j)=min{d(i,k)+d(k,j)+a(j)-a(i)|i<l<j},a[i](0<=i<=n+1)为切割点的位置,a[j]-a[i]代表切一刀的费用。切完之后,小木棍变成i~k和k~j两部分。切割点编号为1~n,左边界为0,右边界为n+1,则答案为d(0,n+1)。
代码:
#include <iostream>
#include <cstring>
using namespace std;
const int N = 1010;
const int INF = 0x3f3f3f3f;
int main() {
int l, n;
while(cin>>l && l) {
cin>>n;
int a[N], dp[N][N];
memset(dp, INF, sizeof(dp));
for(int i=1; i<=n; i++) {
cin>>a[i];
dp[i-1][i] = 0;
}
a[0] = 0; a[n+1] = l; dp[n][n+1] = 0;
for(int len=2; len<=n+1; len++) {
for(int i=0; i<n; i++) {
int j = i + len;
if(j > n + 1)
break;
for(int k=i+1; k<j; k++)
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + a[j] - a[i]);
}
}
cout<<"The minimum cutting is "<<dp[0][n+1]<<'.'<<endl;
}
return 0;
}