UVA10003 Cutting Sticks

题意:

有一根长度为L(L<1000)的木棍,还有n(n<50)个切割点的位置(从小到大排序)。要求在这些切割点的位置处把棍子切成n+1部分,使得切割总费用最小。每次切割的费用等与被切割木棍的长度。

思路:

设d(i,j)为切割小木棍i~j的最小费用,则d(i,j)=min{d(i,k)+d(k,j)+a(j)-a(i)|i<l<j},a[i](0<=i<=n+1)为切割点的位置,a[j]-a[i]代表切一刀的费用。切完之后,小木棍变成i~k和k~j两部分。切割点编号为1~n,左边界为0,右边界为n+1,则答案为d(0,n+1)。

代码:

#include <iostream>
#include <cstring>
using namespace std;

const int N = 1010;
const int INF = 0x3f3f3f3f;

int main() {
    int l, n;
    while(cin>>l && l) {
        cin>>n;
        int a[N], dp[N][N];
        memset(dp, INF, sizeof(dp));
        for(int i=1; i<=n; i++) {
            cin>>a[i];
            dp[i-1][i] = 0;
        }
        a[0] = 0; a[n+1] = l; dp[n][n+1] = 0;
        for(int len=2; len<=n+1; len++) {
            for(int i=0; i<n; i++) {
                int j = i + len;
                if(j > n + 1)
                    break;
                for(int k=i+1; k<j; k++)
                    dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + a[j] - a[i]);
            }
        }
        cout<<"The minimum cutting is "<<dp[0][n+1]<<'.'<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

重生之我是oi高手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值