- 博客(9)
- 收藏
- 关注
原创 Springboot单体版引入分布式事务Seata(不用nacos)
springboot单体项目由于涉及多数据源,多数据源切换会导致普通的Transactional事务失效,遂采用springboot+seata+本地file的方式实现分布式事务
2024-08-29 12:27:23 790
原创 IDEA “Import project from external model” 和 “Create project from existing sources”区别
简单说明下idea导入项目时的两种方式
2023-09-08 10:56:40 803 1
原创 Element-UI解决跨域上传问题(:http-request)
Element-UI解决跨域上传问题(:http-request)书写本文的起因是在使用若依前后端分离框架过程中需要进行图片上传的操作,但是本机前端上传的图片是发送给服务器的后端接口,后端接口返回对应的json字符串,涉及到跨域上传问题,这里给出一个解决方案(因为其它设置例如:在配置文件config 里面增加代理的方式、 with-credentials=“true”等没有作用)vue代码script:利用XMLHttpRequest实现的数据回传uploadFile(param) {
2021-10-30 10:43:47 2124 3
原创 关于GPU的一些备注
使用nvidia-smi查看一些GPU的情况Processes 部分显示的是 在GPU设备上 计算或者Graphics Context 的进程列表;所列的形式是以 GPU index 是现在使用的是哪个GPU 设备号PID 给出相应的进程号Type 给出是在GPU中使用的是计算(用C代表,常规的的计算)还是图形图像处理(用G代表,比如做图形渲染); “C+G” for the ...
2019-09-05 11:19:28 631
原创 逻辑回归的感悟
关于分类和回归的区别就是一个是离散一个是连续。另外逻辑回归和线性回归的区别:softmax函数的目的就是输出0~1之间的预测(比如输出使用了sigmoid),就是所谓的做逻辑回归,其loss是交叉熵(可以说专门用于逻辑回归)的变种(信息熵还是什么的,就是忽略错误的估计项,自己去复习)。线性回归是没有范围的,如y=wx+b是输出任意值,所以其损失函数也一般是用最小二分法,用于做线性回归预测(比如b...
2019-08-29 17:16:07 449
原创 softmax函数
softmax函数softmax函数的分类实质就是由几个神经元组成,比如四分类,其就是由四个神经元做最后的输出,然后label就是对应数量的一个01组合,比如4分类就是[0,1,10]这样的label,100个就是100个01组成的。potorch里面nn.Linear(2048,x)中的x实际上就是softmax分类的输出数,softmax就是由x个神经元组成。...
2019-08-29 09:53:03 350
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人