如何选择回归损失函数
无论在机器学习还是深度领域中,损失函数都是一个非常重要的知识点。损失函数(Loss Function)是用来估量模型的预测值 f(x) 与真实值 y 的不一致程度。我们的目标就是最小化损失函数,让 f(x) 与 y 尽量接近。通常可以使用梯度下降算法寻找函数最小值。
损失函数有许多不同的类型,没有哪种损失函数适合所有的问题,需根据具体模型和问题进行选择。一般来说,损失函数大致可以分成两类:回归(Regression)和分类(Classification)。
回归模型中的三种损失函数包括:均方误差(Mean Square Error)、平均绝对误差(Mean Absolute Error,MAE)、Huber Loss。
1. 均方误差(Mean Square Error,MSE)
均方误差指的就是模型预测值 f(x) 与样本真实值 y 之间距离平方的平均值。其公式如下所示:
其中,yi 和 f(xi) 分别表示第 i 个样本的真实值和预测值,m 为样本个数。
为了简化讨论,忽略下标 i,m = 1,以 y-f(x) 为横坐标,MSE 为纵坐标,绘制其损失函数的图形:
MSE 曲线的特点是光滑连续、可导,便于使用梯度下降算法,是比较常用的一种损失函数。而且,MSE 随着误差的减小,梯度也在减小,这有利于函数的收敛,即使固定学习因子,函数也能较快取得最小值。
平方误差有个特性,就是当 yi 与 f(xi) 的差值大于 1 时,会增大其误差;当 yi 与 f(xi) 的差值小于 1 时,会减小其误差。这是由平方的特性决定的。也就是说, MSE 会对误差较大(>1)的情况给予更大的惩罚,对误差较小(<1)的情况给予更小的惩罚。从训练的角度来看,模型会更加偏向于惩罚较大的点,赋予其更大的权重。
如果样本中存在离群点,MSE 会给离群点赋予更高的权重,但是却是以牺牲其他正常数据点的预测效果为代价,这最终会降低模型的整体性能。我们来看一下使用 MSE 解决含有离群点的回归模型。
-
import numpy
as np
-
import matplotlib.pyplot
as plt
-
x = np.linspace(
1,
20,
40)
-
y = x + [np.random.choice(
4)
for _
in range(
40)]
-
y[
-5:] -=
8
-
X = np.vstack((np.ones_like(x),x))
# 引入常数项 1
-
m = X.shape[
1]
-
# 参数初始化
-
W = np.zeros((
1,
2))
-
-
# 迭代训练
-
num_iter =
20
-
lr =
0.01
-
J = []
-
for i
in range(num_iter):
-
y_pred = W.dot(X)
-
loss =
1/(
2*m) * np.sum((y-y_pred)**
2)
-
J.append(loss)
-
W = W + lr *
1/m * (y-y_pred).dot(X.T)
-
-
# 作图
-
y1 = W[
0,
0] + W[
0,
1]*
1
-
y2 = W[
0,
0] + W[
0,
1]*
20
-
plt.scatter(x, y)
-
plt.plot([
1,
20],[y1,y2])
-
plt.show()
拟合结果如下图所示:
可见,使用 MSE 损失函数,受离群点的影响较大,虽然样本中只有 5 个离群点,但是拟合的直线还是比较偏向于离群点。这往往是我们不希望看到的。
2. 平均绝对误差(Mean Absolute Error,MAE)
平均绝对误差指的就是模型预测值 f(x) 与样本真实值 y 之间距离的平均值。其公式如下所示:
为了简化讨论,忽略下标 i,m = 1,以 y-f(x) 为横坐标,MAE 为纵坐标,绘制其损失函数的图形:
直观上来看,MAE 的曲线呈 V 字型,连续但在 y-f(x)=0 处不可导,计算机求解导数比较困难。而且 MAE 大部分情况下梯度都是相等的,这意味着即使对于小的损失值,其梯度也是大的。这不利于函数的收敛和模型的学习。
值得一提的是,MAE 相比 MSE 有个优点就是 MAE 对离群点不那么敏感,更有包容性。因为 MAE 计算的是误差 y-f(x) 的绝对值,无论是 y-f(x)>1 还是 y-f(x)<1,没有平方项的作用,惩罚力度都是一样的,所占权重一样。针对 MSE 中的例子,我们来使用 MAE 进行求解,看下拟合直线有什么不同。
-
X = np.vstack((np.ones_like(x),x))
# 引入常数项 1
-
m = X.shape[
1]
-
# 参数初始化
-
W = np.zeros((
1,
2))
-
-
# 迭代训练
-
num_iter =
20
-
lr =
0.01
-
J = []
-
for i in range(num_iter):
-
y_pred = W.dot(X)
-
loss =
1/m * np.sum(np.abs(y-y_pred))
-
J.append(loss)
-
mask = (y-y_pred).copy()
-
mask[y-y_pred >
0] =
1
-
mask[mask <=
0] =
-1
-
W = W + lr *
1/m * mask.dot(X.T)
-
-
# 作图
-
y1 = W[
0,
0] + W[
0,
1]*
1
-
y2 = W[
0,
0] + W[
0,
1]*
20
-
plt.scatter(x, y)
-
plt.plot([
1,
20],[y1,y2],
'r--')
-
plt.xlabel(
'x')
-
plt.ylabel(
'y')
-
plt.title(
'MAE')
-
plt.show()
注意上述代码中对 MAE 计算梯度的部分。
拟合结果如下图所示:
显然,使用 MAE 损失函数,受离群点的影响较小,拟合直线能够较好地表征正常数据的分布情况。这一点,MAE 要优于 MSE。二者的对比图如下:
选择 MSE 还是 MAE 呢?
实际应用中,我们应该选择 MSE 还是 MAE 呢?从计算机求解梯度的复杂度来说,MSE 要优于 MAE,而且梯度也是动态变化的,能较快准确达到收敛。但是从离群点角度来看,如果离群点是实际数据或重要数据,而且是应该被检测到的异常值,那么我们应该使用MSE。另一方面,离群点仅仅代表数据损坏或者错误采样,无须给予过多关注,那么我们应该选择MAE作为损失。
3. Huber Loss
既然 MSE 和 MAE 各有优点和缺点,那么有没有一种激活函数能同时消除二者的缺点,集合二者的优点呢?答案是有的。Huber Loss 就具备这样的优点,其公式如下:
Huber Loss 是对二者的综合,包含了一个超参数 δ。δ 值的大小决定了 Huber Loss 对 MSE 和 MAE 的侧重性,当 |y−f(x)| ≤ δ 时,变为 MSE;当 |y−f(x)| > δ 时,则变成类似于 MAE,因此 Huber Loss 同时具备了 MSE 和 MAE 的优点,减小了对离群点的敏感度问题,实现了处处可导的功能。
通常来说,超参数 δ 可以通过交叉验证选取最佳值。下面,分别取 δ = 0.1、δ = 10,绘制相应的 Huber Loss,如下图所示:
Huber Loss 在 |y−f(x)| > δ 时,梯度一直近似为 δ,能够保证模型以一个较快的速度更新参数。当 |y−f(x)| ≤ δ 时,梯度逐渐减小,能够保证模型更精确地得到全局最优值。因此,Huber Loss 同时具备了前两种损失函数的优点。
下面,我们用 Huber Loss 来解决同样的例子。
-
X = np.vstack((np.ones_like(x),x))
# 引入常数项 1
-
m = X.shape[
1]
-
# 参数初始化
-
W = np.zeros((
1,
2))
-
-
# 迭代训练
-
num_iter =
20
-
lr =
0.01
-
delta =
2
-
J = []
-
for i in range(num_iter):
-
y_pred = W.dot(X)
-
loss =
1/m * np.sum(np.abs(y-y_pred))
-
J.append(loss)
-
mask = (y-y_pred).copy()
-
mask[y-y_pred > delta] = delta
-
mask[mask < -delta] = -delta
-
W = W + lr *
1/m * mask.dot(X.T)
-
-
# 作图
-
y1 = W[
0,
0] + W[
0,
1]*
1
-
y2 = W[
0,
0] + W[
0,
1]*
20
-
plt.scatter(x, y)
-
plt.plot([
1,
20],[y1,y2],
'r--')
-
plt.xlabel(
'x')
-
plt.ylabel(
'y')
-
plt.title(
'MAE')
-
plt.show()
注意上述代码中对 Huber Loss 计算梯度的部分。
拟合结果如下图所示:
可见,使用 Huber Loss 作为激活函数,对离群点仍然有很好的抗干扰性,这一点比 MSE 强。另外,我们把这三种损失函数对应的 Loss 随着迭代次数变化的趋势绘制出来:
MSE:
MAE:
Huber Loss:
对比发现,MSE 的 Loss 下降得最快,MAE 的 Loss 下降得最慢,Huber Loss 下降速度介于 MSE 和 MAE 之间。也就是说,Huber Loss 弥补了此例中 MAE 的 Loss 下降速度慢的问题,使得优化速度接近 MSE。
最后,我们把以上介绍的回归问题中的三种损失函数全部绘制在一张图上。
好了,以上就是红色石头对回归问题 3 种常用的损失函数包括:MSE、MAE、Huber Loss 的简单介绍和详细对比。这些简单的知识点你是否已经完全掌握了呢?
<div class="content" style="width: 962px;">
<a href="https://blog.csdn.net/sjokes/article/details/84504436" target="_blank" title="回归问题中5种常用损失函数">
<h4 class="text-truncate oneline" style="width: 802px;">
<em>回归</em>问题中5种常用<em>损失函数</em> </h4>
<div class="info-box d-flex align-content-center">
<p class="date-and-readNum oneline">
<span class="date hover-show">11-25</span>
<span class="read-num hover-hide">
阅读数
3417</span>
</p>
</div>
</a>
<p class="content" style="width: 962px;">
<a href="https://blog.csdn.net/sjokes/article/details/84504436" target="_blank" title="回归问题中5种常用损失函数">
<span class="desc oneline">机器学习的所有算法都需要最大化或者最小化目标函数,在最小化场景下,目标函数又称损失函数。实际应用中,选取损失函数需要从多个角度考虑,如是否有异常值、算法、求导难度、预测值的置信度等等。损失函数可分为两...</span>
</a>
<span class="blog_title_box oneline ">
<span class="type-show type-show-blog type-show-after">博文</span>
<a target="_blank" href="https://blog.csdn.net/sjokes">来自: <span class="blog_title"> sjokes的博客</span></a>
</span>
</p>
</div>
</div>
线性回归的损失函数与逻辑回归的损失函数
05-02 阅读数 1万+
一、线性回归损失函数的两种解释线性回归的损失函数是平方损失函数,为什么使用平方的形式,参考:线性回归损失函数为什么要用平方形式,讲得很清楚。在线性回归中,对于训练数据样本(xi,yi)(x_i,y_i... 博文 来自: wjlucc的专栏
【数据应用技巧】选择合适的损失函数(回归篇)
07-03 阅读数 873
案例来源:@AI科技评论案例地址:https://mp.weixin.qq.com/s/Gt8Q4Wm36DoNBO4xI8SJAw1.MSE(均方误差,L2)1)损失函数是预测与目标之间的误差平方和... 博文 来自: 数据产品笔记
logistic回归详解(二):损失函数(cost function)详解
04-15 阅读数 10万+
有监督学习机器学习分为有监督学习,无监督学习,半监督学习,强化学习。对于逻辑回归来说,就是一种典型的有监督学习。既然是有监督学习,训练集自然可以用如下方式表述:{(x1,y1),(x2,y2),⋯,(... 博文 来自: bitcarmanlee的博客
<div class="recommend-item-box recommend-ad-box"><div id="_61w6ybe93bs"><iframe width="852" frameborder="0" height="60" scrolling="no" src="https://pos.baidu.com/s?hei=60&wid=852&di=u3491668&ltu=https%3A%2F%2Fblog.csdn.net%2Fqq_34555202%2Farticle%2Fdetails%2F82491037&psi=e00de42716bd475d1247bb527f6e5f27&ari=2&dtm=HTML_POST&prot=2&dri=0&ti=%E5%A6%82%E4%BD%95%E9%80%89%E6%8B%A9%E5%9B%9E%E5%BD%92%E6%8D%9F%E5%A4%B1%E5%87%BD%E6%95%B0&cdo=-1&dis=0&tpr=1566724164089&cja=false&exps=111000,118009,110011&pis=-1x-1&cce=true&col=zh-CN&pcs=1863x961&cec=UTF-8&dai=1&drs=1&psr=1920x1080&tlm=1566724164&ccd=24&ant=0&cmi=52&chi=1&cpl=28&cfv=0&ltr=https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3D-1EJrJJw0Y8sTYS0PYepw4hOmLTh5-jp7NkfeEiRAZJRD1Xcr0YrLsTELe-kM7HhSn5pBtorByx8B_mflaCaoq-TrRxI02kxu0WRAwXDcoi%26wd%3D%26eqid%3Dc6b2a05f00063bdb000000065d62500e&par=1920x1080&dc=3&pss=1863x12835&ps=10486x582&tcn=1566724164"></iframe><em style="width:0px;height:0px;"></em></div><script type="text/javascript" src="//rabc1.iteye.com/production/res/rxjg.js?pkcgstj=jm"></script></div>
如何选择合适的损失函数,请看......
06-18 阅读数 2954
翻译|张建军编辑|阿司匹林出品|AI科技大本营【AI科技大本营导读】机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组...... 博文 来自: AI科技大本营
回归模型常见的损失函数
05-21 阅读数 128
机器学习中的所有算法都依赖于最小化或最大化函数,我们将其称为“目标函数”。最小化的函数组称为“损失函数”。损失函数是衡量预测模型在能够预测预期结果方面的表现有多好的指标。寻找最小值的最常用方法是“梯度... 博文 来自: 陨星落云的博客
线性回归和逻辑回归损失函数的区别
03-21 阅读数 1205
首先说什么是凸函数。对区间[a,b]上定义的函数f,若它对区间中任意两点x1和x2,均有f((x1+x2)/2)&lt;=(f(x1)+f(x2))/2,则称f为区间[a,b]上的凸函数。对实... 博文 来自: 一路向北
如何选择 损失函数 Loss Function
05-09 阅读数 4746
欢迎使用Markdown编辑器写博客1.交叉熵CrossEntropy交叉熵与熵相对,如同协方差与方差熵考察的是单个的信息(分布)的期望:H(p)=−∑i=1np(xi)logp(xi)H(p)=-\... 博文 来自: zeng
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_60" data-pid="60" data-report-click="{"mod":"kp_popu_60-43","keyword":""}"><div class="mediav_ad"><newsfeed class="newsfeed QIHOO__WEB__SO__1566724163727_755" id="QIHOO__WEB__SO__1566724163727_755" style="display:block;margin:0;padding:0;border:none;width:900px;height:84px;overflow-y:hidden;overflow-x:hidden;position:relative;text-align:left;"><info-div id="QIHOO__WEB__SO__1566724163727_755-info" style="zoom:1"><info-div class="QIHOO__WEB__SO__1566724163727_755 singleImage clk" data-href="http://spro.so.com/searchthrow/api/midpage/throw?ls=sn2265522&q=%E4%BA%BA%E8%84%B8%E8%AF%86%E5%88%AB%E8%BD%AF%E4%BB%B6&lmid=6236c5771109bb23.0&mid=c2cb07b30ef83f8766bdf1f30432682d&huid=10Op9ExMis1HCBY5Y4codt%2FDKR%2BqE%2FECOmMP8C6Hf5cEA%3D&lm_extend=ctype%3A22%7Clmbid%3A21%2C2%2C37%2C32%2C61%2C74%2C7%2C8%2C102%2C111%7Cjt%3A2%7Cmaxbid%3A4456453%2C4456458%2C4456961%2C4456963%2C4390928%2C4390947&ctype=22&rurl=https%3A%2F%2Fblog.csdn.net%2Fqq_34555202%2Farticle%2Fdetails%2F82491037&bucket_id=21,2,37,32,61,74,7,8,102,111&lmsid=6236c5771109bb23.0&is_mpr=0" data-clk="https://stat.lianmeng.360.cn/s2/clk.gif?lm_extend=ctype%3A22%7Clmbid%3A21%2C2%2C37%2C32%2C61%2C74%2C7%2C8%2C102%2C111%7Cjt%3A2%7Cmaxbid%3A4456453%2C4456458%2C4456961%2C4456963%2C4390928%2C4390947&qid=6236c5771109bb23.0&nu=4&ls=sn2265522&ifr=0&ir=1&m=BgIDBgwFBwcBAQAJCwsCA2dK7ZiDHI_wv0pbqQ&wp=AAAAAF1iUEcAAAAAAANSw3dpIZFufHgQBDT9cQ&index=0&txt=%E4%BA%BA%E8%84%B8%E8%AF%86%E5%88%AB%E8%BD%AF%E4%BB%B6&ds=%%DEAL_SLOT%%&_r=1566724167170,https://max-l.mediav.com/rtb?type=3&ver=1&v=CH8SEDEzOGNiYzUxZWZlMzcwMjkYsqOKASCisEUoAWIXMTE5MTI5NjE3NDQ1NjEzMDQwODAwMTZwAA&k=do5NeAAAAAA=&i=cQTEpsa2BJZN&exp=BQBECgBEAQJEAwJEEABDIwBD&x=__OFFSET_X__&y=__OFFSET_Y__&st=__EVENT_TIME_START__&et=__EVENT_TIME_END__&adw=__ADSPACE_W__&adh=__ADSPACE_H__&tc=&turl=">
<info-div class="wrap">
<info-div class="singleImage-img singleImage-img-left">
<info-div class="img" style="background-image:url(https://p3.ssl.qhimgs0.com/sdm/360_200_/t015f5b58f1133b4fdf.jpg)"><info-div class="ads-tag"></info-div></info-div>
</info-div>
<info-div class="singleImage-body singleImage-body-left">
<info-div class="singleImage-title">开源人脸识别软件有哪些?</info-div>
<info-div class="singleImage-desc">大观</info-div>
</info-div>
回归损失函数: L1 Loss
05-07 阅读数 437
平均绝对误差,L1损失平均绝对误差(MAE)是另一种用于回归模型的损失函数。MAE是目标变量和预测变量之间绝对差值之和。因此它衡量的是一组预测值中的平均误差大小,而不考虑它们的方向(如果我们考虑方向的... 博文 来自: 小花生的博客
<div class="recommend-item-box blog-expert-recommend-box" style="display: block;">
<div class="d-flex">
<div class="blog-expert-recommend">
<div class="blog-expert">
<div class="blog-expert-flexbox" data-report-view="{"mod":"popu_709","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><div class="blog-expert-item"><div class="blog-expert-info-box"><div class="blog-expert-img-box" data-report-click="{"mod":"popu_709","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><a href="https://blog.csdn.net/sjokes" target="_blank"><img src="https://avatar.csdn.net/6/D/0/3_sjokes.jpg" alt="sjokes" title="sjokes"></a><span data-report-click="{"mod":"popu_710","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><span class="blog-expert-button-follow btn-red-follow" data-name="sjokes" data-nick="sjokes">关注</span></span></div><div class="info"><span data-report-click="{"mod":"popu_709","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><a href="https://blog.csdn.net/sjokes" target="_blank"><h5 class="oneline" title="sjokes">sjokes</h5></a></span> <p></p><p class="article-num" title="2篇文章"> 2篇文章</p><p class="article-num" title="排名:千里之外"> 排名:千里之外</p><p></p></div></div></div><div class="blog-expert-item"><div class="blog-expert-info-box"><div class="blog-expert-img-box" data-report-click="{"mod":"popu_709","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><a href="https://blog.csdn.net/wjlucc" target="_blank"><img src="https://avatar.csdn.net/8/0/6/3_wjlucc.jpg" alt="wjlucc" title="wjlucc"></a><span data-report-click="{"mod":"popu_710","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><span class="blog-expert-button-follow btn-red-follow" data-name="wjlucc" data-nick="wjlucc">关注</span></span></div><div class="info"><span data-report-click="{"mod":"popu_709","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><a href="https://blog.csdn.net/wjlucc" target="_blank"><h5 class="oneline" title="wjlucc">wjlucc</h5></a></span> <p></p><p class="article-num" title="20篇文章"> 20篇文章</p><p class="article-num" title="排名:千里之外"> 排名:千里之外</p><p></p></div></div></div><div class="blog-expert-item"><div class="blog-expert-info-box"><div class="blog-expert-img-box" data-report-click="{"mod":"popu_709","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><a href="https://blog.csdn.net/u013382288" target="_blank"><img src="https://avatar.csdn.net/E/7/3/3_u013382288.jpg" alt="稻蛙" title="稻蛙"></a><span data-report-click="{"mod":"popu_710","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><span class="blog-expert-button-follow btn-red-follow" data-name="u013382288" data-nick="稻蛙">关注</span></span></div><div class="info"><span data-report-click="{"mod":"popu_709","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><a href="https://blog.csdn.net/u013382288" target="_blank"><h5 class="oneline" title="稻蛙">稻蛙</h5></a></span> <p></p><p class="article-num" title="135篇文章"> 135篇文章</p><p class="article-num" title="排名:千里之外"> 排名:千里之外</p><p></p></div></div></div><div class="blog-expert-item"><div class="blog-expert-info-box"><div class="blog-expert-img-box" data-report-click="{"mod":"popu_709","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><a href="https://blog.csdn.net/bitcarmanlee" target="_blank"><img src="https://avatar.csdn.net/C/6/1/3_bitcarmanlee.jpg" alt="bitcarmanlee" title="bitcarmanlee"></a><span data-report-click="{"mod":"popu_710","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><span class="blog-expert-button-follow btn-red-follow" data-name="bitcarmanlee" data-nick="bitcarmanlee">关注</span></span></div><div class="info"><span data-report-click="{"mod":"popu_709","dest":"https://blog.csdn.net/qq_34555202/article/details/82491037"}"><a href="https://blog.csdn.net/bitcarmanlee" target="_blank"><h5 class="oneline" title="bitcarmanlee">bitcarmanlee</h5></a></span> <p></p><p class="article-num" title="513篇文章"> 513篇文章</p><p class="article-num" title="排名:455"> 排名:455</p><p></p></div></div></div></div>
</div>
</div>
</div>
</div>
机器学习最常用的5个“”回归损失函数”
04-25 阅读数 275
本文系总结自文章机器学习大牛最常用的5个回归损失函数,你知道几个?。详细讲解请直接前往,本文只作为作者的笔记列出。误差=真实值-预测值。1MAE(L1损失)与MSE(L2损失)1.1MAE与MSE的定... 博文 来自: 张之海的博客
Logistic损失函数证明
09-25 阅读数 7044
在理解Logistic回归算法原理中我们指出了Logistic回归的损失函数定义(在这里重新约定符号):对于单个样本而言,令为样本的期望输出,记为y;为样本的实际输出,记为y_hat,那么Logist... 博文 来自: chaibubble
逻辑回归损失函数与最大似然估计
09-07 阅读数 858
机器学习的损失函数是人为设计的,用于评判模型好坏(对未知的预测能力)的一个标准、尺子,就像去评判任何一件事物一样,从不同角度看往往存在不同的评判标准,不同的标准往往各有优劣,并不冲突。唯一需要注意的就... 博文 来自: xiaocong1990的博客
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_61" data-pid="61"><iframe src="https://adaccount.csdn.net/#/preview/261?m=bLcEnbQQHbcitJLDbyJSiAJiEHcAttnQmUJJbHJXcbnbiHDLtALSbbEXELAbAcHQSWELQEtEADiSvEDAUbbLiJntoDtHctnAQEpQ&k=" frameborder="0" width="100%" height="75px" scrolling="no"></iframe><img class="pre-img-lasy" data-src="https://kunyu.csdn.net/1.png?d=2&k=&m=bLcEnbQQHbcitJLDbyJSiAJiEHcAttnQmUJJbHJXcbnbiHDLtALSbbEXELAbAcHQSWELQEtEADiSvEDAUbbLiJntoDtHctnAQEpQ"></div></div>
回归损失函数:Log-Cosh Loss
05-07 阅读数 559
Log-Cosh损失函数Log-Cosh是应用于回归任务中的另一种损失函数,它比L2损失更平滑。Log-cosh是预测误差的双曲余弦的对数。优点:对于较小的X值,log(cosh(x))约等于(x**... 博文 来自: 小花生的博客
常见回归和分类的损失函数
03-21 阅读数 170
分类和回归是机器学习中研究的两大目标。分类即预测未知数据的类别,分类模型的输出可以是离散的,也可以是连续的,一般是输出每个类别的概率,分类分为二元分类和多元分类,二元分类如逻辑回归(LR)、支持向量机... 博文 来自: mdh25259mdh的博客
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_62" data-pid="62"><iframe src="https://adaccount.csdn.net/#/preview/263?m=ALJcQbEtAQSHnAcnLDJnnbyiLEJpHcJQtAEAJASJmiipvStAHnSSXEiDHDnibppXAUESbHLQiAWLQcQJyDbDJpycLHcJEtQApbnQ&k=" frameborder="0" width="100%" height="75px" scrolling="no"></iframe><img class="pre-img-lasy" data-src="https://kunyu.csdn.net/1.png?d=2&k=&m=ALJcQbEtAQSHnAcnLDJnnbyiLEJpHcJQtAEAJASJmiipvStAHnSSXEiDHDnibppXAUESbHLQiAWLQcQJyDbDJpycLHcJEtQApbnQ"></div></div>
机器学习里必备的五种回归损失函数
11-29 阅读数 142
所有的机器学习算法都或多或少的依赖于对目标函数最大化或者最小化的过程。我们常常将最小化的函数称为损失函数,它主要用于衡量模型的预测能力。在寻找最小值的过程中,我们最常用的方法是梯度下降法,这种方法很像... 博文 来自: mbshqqb的博客
常见问题类型的最后一层激活和损失函数选择
01-14 阅读数 567
问题类型 最后一层激活 损失函数 二分类问题 sigmoid binary_crossentropy 多分类、单标签问题 softmax categorical_cross... 博文 来自: qq_35419086的博客
<div class="recommend-item-box recommend-ad-box"><div id="_g94y1x9foxg" style=""><iframe width="852" frameborder="0" height="60" scrolling="no" src="//pos.baidu.com/s?hei=60&wid=852&di=u3491668&ltu=https%3A%2F%2Fblog.csdn.net%2Fqq_34555202%2Farticle%2Fdetails%2F82491037&psi=e00de42716bd475d1247bb527f6e5f27&dri=1&drs=1&cja=false&pss=1863x12901&dtm=HTML_POST&cdo=-1&cfv=0&cec=UTF-8&ant=0&tlm=1566724164&cmi=52&cce=true&ltr=https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3D-1EJrJJw0Y8sTYS0PYepw4hOmLTh5-jp7NkfeEiRAZJRD1Xcr0YrLsTELe-kM7HhSn5pBtorByx8B_mflaCaoq-TrRxI02kxu0WRAwXDcoi%26wd%3D%26eqid%3Dc6b2a05f00063bdb000000065d62500e&dai=2&tcn=1566724164&chi=1&ccd=24&ari=2&par=1920x1080&dc=3&exps=111000,118009,110011&pcs=1863x961&pis=-1x-1&dis=0&prot=2&psr=1920x1080&ti=%E5%A6%82%E4%BD%95%E9%80%89%E6%8B%A9%E5%9B%9E%E5%BD%92%E6%8D%9F%E5%A4%B1%E5%87%BD%E6%95%B0&tpr=1566724164089&ps=12438x582&col=zh-CN&cpl=28"></iframe></div><script type="text/javascript" src="//rabc1.iteye.com/production/res/rxjg.js?pkcgstj=jm"></script></div>
我们为什么这样选择损失函数
07-22 阅读数 2007
我们为什么这样选择损失函数这个问题深度学习中的“圣经”花书中进行阐述,这里做一个简单的总结和自己的思考。先从信息熵开始说起信息论的基本想法是一个不太可能发现的事件居然发生了,要比一个非常可能的事件发生... 博文 来自: 记录学习的过程
干货 | 深度学习之损失函数与激活函数的选择
09-19 阅读数 3414
微信公众号关键字全网搜索最新排名【机器学习算法】:排名第一【机器学习】:排名第二【Python】:排名第三【算法】:排名第四前言在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传... 博文 来自: 机器学习算法与Python学习
激活函数与对应的损失函数选择(binary与multi-class如何选择损失函数)
03-24 阅读数 297
之前一段时间,对激活函数和损失函数一直是懵懂的状态,只知道最后一层常用的激活函数是sigmoid或者softmax,而损失函数一般用的是cross-entropy或者diceloss(我看的都是分割方... 博文 来自: normol的博客
深层神经网络——分类、回归的损失函数
07-18 阅读数 1万+
神经网络模型的效果以及优化目标是通过损失函数(lossfunction)来定义的。分类问题和回归问题有很多经典的损失函数。分类问题和回归问题是监督学习的两大种类。分类问题希望解决的是将不同的样本分到事... 博文 来自: 魂小猫的博客
【机器学习精研】——5种常见的回归损失函数
10-14 阅读数 348
【引言】所有机器学习算法都旨在最小化或最大化目标函数,其中,将目标函数最小化的过程称为损失函数。损失函数:是衡量预测模型预测期望结果表现的指标。常用方法为梯度下降法,通过设置一定的步长,让函数在求导的... 博文 来自: 锟金铐鏜鏜鏜
<div class="recommend-item-box recommend-ad-box"><div id="_mr7ixi7706q" style="width: 100%;"><iframe width="852" frameborder="0" height="60" scrolling="no" src="//pos.baidu.com/s?hei=60&wid=852&di=u3491668&ltu=https%3A%2F%2Fblog.csdn.net%2Fqq_34555202%2Farticle%2Fdetails%2F82491037&psi=e00de42716bd475d1247bb527f6e5f27&cdo=-1&ari=2&cce=true&cmi=52&ant=0&tcn=1566724164&par=1920x1080&col=zh-CN&dtm=HTML_POST&chi=1&exps=111000,119009,110011&cja=false&drs=1&cec=UTF-8&cpl=28&pcs=1863x961&pis=-1x-1&psr=1920x1080&ti=%E5%A6%82%E4%BD%95%E9%80%89%E6%8B%A9%E5%9B%9E%E5%BD%92%E6%8D%9F%E5%A4%B1%E5%87%BD%E6%95%B0&dai=3&ps=12914x582&ccd=24&cfv=0&ltr=https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3D-1EJrJJw0Y8sTYS0PYepw4hOmLTh5-jp7NkfeEiRAZJRD1Xcr0YrLsTELe-kM7HhSn5pBtorByx8B_mflaCaoq-TrRxI02kxu0WRAwXDcoi%26wd%3D%26eqid%3Dc6b2a05f00063bdb000000065d62500e&dc=3&dri=2&dis=0&prot=2&tlm=1566724164&pss=1863x12967&tpr=1566724164089"></iframe></div><script type="text/javascript" src="//rabc1.iteye.com/production/res/rxjg.js?pkcgstj=jm"></script></div>
<div class="recommend-item-box recommend-download-box clearfix" data-report-click="{"mod":"popu_614","dest":"https://download.csdn.net/download/buluolongcheng/11257851","strategy":"BlogCommendFromQuerySearch","index":"29"}">
<a href="https://download.csdn.net/download/buluolongcheng/11257851" target="_blank">
<div class="content clearfix">
<div class="">
<h4 class="text-truncate oneline clearfix">
入门机器学习必备!五种<em>回归</em><em>损失函数</em>.pdf </h4>
<span class="data float-right">06-25</span>
</div>
<div class="desc oneline">
比较机器学习中常用的5种损失函数,有比较计算曲线图 </div>
<span class="type-show type-show-download">下载</span>
</div>
</a>
</div>
LogisticRegression(逻辑回归,对率回归)损失函数推导
03-05 阅读数 266
昨天面试遇到的问题,今天整理出来。主要是损失函数的推倒。预测函数y=H(x)=11+e−(ωTx+b)y=H(x)=\frac{1}{1+e^{-(\boldsymbol{\mathbf{}\omeg... 博文 来自: wangcaimeng的博客
<div class="recommend-item-box recommend-download-box clearfix" data-report-click="{"mod":"popu_614","dest":"https://download.csdn.net/download/hwgk_wgy/2542582","strategy":"BlogCommendFromQuerySearch","index":"31"}">
<a href="https://download.csdn.net/download/hwgk_wgy/2542582" target="_blank">
<div class="content clearfix">
<div class="">
<h4 class="text-truncate oneline clearfix">
<em>回归</em>测试用例<em>选择</em>方法 </h4>
<span class="data float-right">07-14</span>
</div>
<div class="desc oneline">
先说什么是回归测试,顾名思义,回归测试就是修改完bug之后对程序的新的一轮测试。据微软的统计,按照他们的经验,一般开发人员解决3~4个bug 会衍生出一个新的bug,这就是必须作回归测试的原因。。。。
具体内容请查看《回归测试用例选择方…
下载
模型评估、选择与验证——损失函数
04-14 阅读数 1029
0-1损失函数模型原型sklearn.metrics.zero_one_loss(y_true,y_pred,normalize=True,sample_weight=None)参数y_true:样本... 博文 来自: As的博客
<div class="recommend-item-box recommend-ad-box"><div id="_2xd5h2d8ty5" style=""><iframe width="852" frameborder="0" height="60" scrolling="no" src="https://pos.baidu.com/s?hei=60&wid=852&di=u3491668&ltu=https%3A%2F%2Fblog.csdn.net%2Fqq_34555202%2Farticle%2Fdetails%2F82491037&psi=e00de42716bd475d1247bb527f6e5f27&cpl=28&ti=%E5%A6%82%E4%BD%95%E9%80%89%E6%8B%A9%E5%9B%9E%E5%BD%92%E6%8D%9F%E5%A4%B1%E5%87%BD%E6%95%B0&tlm=1566724164&pis=-1x-1&psr=1920x1080&prot=2&dis=0&dri=3&cfv=0&exps=111000,119009,110011&ccd=24&dtm=HTML_POST&cec=UTF-8&tcn=1566724164&ps=13390x582&ari=2&par=1920x1080&pss=1863x13443&ltr=https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3D-1EJrJJw0Y8sTYS0PYepw4hOmLTh5-jp7NkfeEiRAZJRD1Xcr0YrLsTELe-kM7HhSn5pBtorByx8B_mflaCaoq-TrRxI02kxu0WRAwXDcoi%26wd%3D%26eqid%3Dc6b2a05f00063bdb000000065d62500e&cdo=-1&drs=1&pcs=1863x961&tpr=1566724164089&dai=4&dc=3&cja=false&chi=1&cce=true&cmi=52&ant=0&col=zh-CN"></iframe></div><script type="text/javascript" src="//rabc1.iteye.com/production/res/rxjg.js?pkcgstj=jm"></script></div>
机器学习大牛最常用的5个回归损失函数,你知道几个?
06-24 阅读数 576
“损失函数”是机器学习优化中至关重要的一部分。L1、L2损失函数相信大多数人都早已不陌生。那你了解Huber损失、Log-Cosh损失、以及常用于计算预测区间的分位数损失么?这些可都是机器学习大牛... 博文 来自: Nine days
Keras自带Loss Function研究
04-21 阅读数 228
本文研究Keras自带的几个常用的LossFunctions。categorical_crossentropyVS.sparse_categorical_crossentropy先看categoric... 博文 来自: Forskamse's Blog
【深度学习】:回归 & 分类任务的Loss函数分析
07-03 阅读数 2378
L1&amp;amp;amp;amp;amp;L2loss代码importtensorflowastfimportmatplotlib.pyplotaspltsess=tf.Session()... 博文 来自: yuanCruise
训练分类器为什么要用cross entropy loss(交叉熵损失函数)而不能用mean square error loss(MSE,最小平方差损失函数)?
05-10 阅读数 5887
在一个人工智能群里,有人问起,训练分类器为什么要用crossentropyloss(交叉熵损失函数)而不能用meansquareerrorloss(MSE,最小平方差损失函数)呢?正好,在我的那本《深... 博文 来自: 玉来愈宏的随笔
Huber Loss function
02-22 阅读数 74
转自:https://blog.csdn.net/lanchunhui/article/details/50427055 博文 来自: 岁月流星0824的博客
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_66" data-pid="66" data-report-view="{"mod":"kp_popu_66-87","keyword":""}" data-report-click="{"mod":"kp_popu_66-87","keyword":""}"><div class="mediav_ad"><newsfeed class="newsfeed QIHOO__WEB__SO__1566724164149_382" id="QIHOO__WEB__SO__1566724164149_382" style="display:block;margin:0;padding:0;border:none;width:852px;height:60px;overflow-y:hidden;overflow-x:hidden;position:relative;text-align:left;"><info-div id="QIHOO__WEB__SO__1566724164149_382-info" style="zoom:1"><info-div class="QIHOO__WEB__SO__1566724164149_382 singleImage clk" data-href="http://spro.so.com/searchthrow/api/midpage/throw?ls=sn2265522&q=%E7%9F%A5%E7%BD%91%E6%80%8E%E4%B9%88%E6%9F%A5%E9%87%8D&lmid=6236c5771109bb23.1&mid=c2cb07b30ef83f8766bdf1f30432682d&huid=10Op9ExMis1HCBY5Y4codt%2FDKR%2BqE%2FECOmMP8C6Hf5cEA%3D&lm_extend=ctype%3A22%7Clmbid%3A21%2C2%2C37%2C32%2C61%2C74%2C7%2C8%2C102%2C111%7Cjt%3A2%7Cmaxbid%3A4456453%2C4456458%2C4456961%2C4456963%2C4390928%2C4390947&ctype=22&rurl=https%3A%2F%2Fblog.csdn.net%2Fqq_34555202%2Farticle%2Fdetails%2F82491037&bucket_id=21,2,37,32,61,74,7,8,102,111&lmsid=6236c5771109bb23.1&is_mpr=0" data-pv="https://stat.lianmeng.360.cn/s2/srp.gif?lm_extend=ctype%3A22%7Clmbid%3A21%2C2%2C37%2C32%2C61%2C74%2C7%2C8%2C102%2C111%7Cjt%3A2%7Cmaxbid%3A4456453%2C4456458%2C4456961%2C4456963%2C4390928%2C4390947&qid=6236c5771109bb23.1&nu=4&ls=sn2265522&ifr=0&ir=1&m=BgIDBgwFBwcBAQAJCwsCA2dK7ZiDNghibLzhMg&ds=2&wp=AAAAAF1iUEcAAAAAAANTcCKacBikxZDboTIMUA&_r=1566724167170,https://max-l.mediav.com/rtb?type=2&ver=1&v=CH8SEDEzOGNiYzUxZWZlMzcwMjkYsqOKASCisEUoAmIXMTE5MTI5NjE3NDQ1NjEzMDQwODAwMTaIAQA&k=JKF56AAAAAA=&w=AAAAAF1iUEcAAAAAAANTtG1uiPoXgt70iYanGQ&i=cQpEpsa2BJZI&exp=BQBECgBEAQJEAwJEEABDIwBD&z=1" data-clk="https://stat.lianmeng.360.cn/s2/clk.gif?lm_extend=ctype%3A22%7Clmbid%3A21%2C2%2C37%2C32%2C61%2C74%2C7%2C8%2C102%2C111%7Cjt%3A2%7Cmaxbid%3A4456453%2C4456458%2C4456961%2C4456963%2C4390928%2C4390947&qid=6236c5771109bb23.1&nu=4&ls=sn2265522&ifr=0&ir=1&m=BgIDBgwFBwcBAQAJCwsCA2dK7ZiDNghibLzhMg&wp=AAAAAF1iUEcAAAAAAANTcCKacBikxZDboTIMUA&index=1&txt=%E7%9F%A5%E7%BD%91%E6%80%8E%E4%B9%88%E6%9F%A5%E9%87%8D&ds=%%DEAL_SLOT%%&_r=1566724167170,https://max-l.mediav.com/rtb?type=3&ver=1&v=CH8SEDEzOGNiYzUxZWZlMzcwMjkYsqOKASCisEUoAmIXMTE5MTI5NjE3NDQ1NjEzMDQwODAwMTZwAA&k=cH5LcQAAAAA=&i=cQpEpsa2BJZI&exp=BQBECgBEAQJEAwJEEABDIwBD&x=__OFFSET_X__&y=__OFFSET_Y__&st=__EVENT_TIME_START__&et=__EVENT_TIME_END__&adw=__ADSPACE_W__&adh=__ADSPACE_H__&tc=&turl=">
<info-div class="wrap">
<info-div class="singleImage-img singleImage-img-left">
<info-div class="img" style="background-image:url(https://p3.ssl.qhimgs0.com/sdm/360_200_/t0154bf6ed5deb1c7d2.jpg)"><info-div class="ads-tag"></info-div></info-div>
</info-div>
<info-div class="singleImage-body singleImage-body-left">
<info-div class="singleImage-title">知网查重的几个原理你知道吗?</info-div>
<info-div class="singleImage-desc">大观</info-div>
</info-div>
神经网络输出层激活函数与损失函数选择
02-14 阅读数 1294
问题 激活函数 损失函数 回归 identity MES/ SQUARED_LOSS 分类 二分类 单标签输出 sigmoid XENT 二... 博文 来自: bewithme的专栏
分类问题中,常选择交叉熵损失函数而不是MSE损失函数
06-17 阅读数 70
均方误差(MeanSquareError,MSE)损失函数:对求偏导(对求导类似):交叉熵损失函数:对求偏导(对求导类似):ps:以上公式中,激活函数取sigmod激活函数参数更新过程:对比公式(2)... 博文 来自: tianyunzqs的专栏
回归只是最开始的选择
03-26 阅读数 347
已经近两年没有回csdn写博客了。从一个技术控,慢慢的去学习了解市场,了解产品。这两年更多的在市场里,想找到更好的创业产品。毕竟有梦想的人,就要去做有梦想的事。 希望自己还是能找到做任何事情的初心。不... 博文 来自: 梦想启航者
<div class="recommend-item-box recommend-download-box clearfix" data-report-click="{"mod":"popu_614","dest":"https://download.csdn.net/download/u012486566/6417257","strategy":"BlogCommendFromQuerySearch","index":"42"}">
<a href="https://download.csdn.net/download/u012486566/6417257" target="_blank">
<div class="content clearfix">
<div class="">
<h4 class="text-truncate oneline clearfix">
支持向量机<em>回归</em>的参数<em>选择</em>方法 </h4>
<span class="data float-right">10-18</span>
</div>
<div class="desc oneline">
支持向量机回归的参数选择方法 </div>
<span class="type-show type-show-download">下载</span>
</div>
</a>
</div>
损失函数——交叉熵损失函数【转】
03-29 阅读数 38
这篇文章对交叉熵损失讲的比较透彻,同时也浅显易懂,请参考。https://zhuanlan.zhihu.com/p/35709485... 博文 来自: weixin_41813620的博客
<div class="recommend-item-box recommend-ad-box"><div style=""><iframe width="852" frameborder="0" height="60" scrolling="no" src="https://pos.baidu.com/s?hei=60&wid=852&di=u3491668&ltu=https%3A%2F%2Fblog.csdn.net%2Fqq_34555202%2Farticle%2Fdetails%2F82491037&psi=e00de42716bd475d1247bb527f6e5f27&dtm=HTML_POST&col=zh-CN&ccd=24&cce=true&ari=2&cdo=-1&tlm=1566724164&cmi=52&chi=1&tcn=1566724164&cfv=0&ltr=https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3D-1EJrJJw0Y8sTYS0PYepw4hOmLTh5-jp7NkfeEiRAZJRD1Xcr0YrLsTELe-kM7HhSn5pBtorByx8B_mflaCaoq-TrRxI02kxu0WRAwXDcoi%26wd%3D%26eqid%3Dc6b2a05f00063bdb000000065d62500e&cpl=28&dai=5&dri=4&dis=0&dc=3&pcs=1863x961&psr=1920x1080&exps=111000,118009,110011&prot=2&pss=1863x14411&tpr=1566724164089&drs=1&par=1920x1080&pis=-1x-1&cja=false&cec=UTF-8&ps=14358x582&ant=0&ti=%E5%A6%82%E4%BD%95%E9%80%89%E6%8B%A9%E5%9B%9E%E5%BD%92%E6%8D%9F%E5%A4%B1%E5%87%BD%E6%95%B0"></iframe></div><script type="text/javascript" src="//rabc1.iteye.com/production/res/rxjg.js?pkcgstj=jm"></script></div>
交叉熵损失函数和均方误差损失函数
04-19 阅读数 3612
交叉熵 分类问题中,预测结果是(或可以转化成)输入样本属于n个不同分类的对应概率。比如对于一个4分类问题,期望输出应该为g0=[0,1,0,0],实际输出为g1=[0.2,0.4,0.4,0],计算g... 博文 来自: 牧野的博客
平方损失函数与交叉熵损失函数
05-07 阅读数 9180
1.前言在机器学习中学习模型的参数是通过不断损失函数的值来实现的。对于机器学习中常见的损失函数有:平方损失函数与交叉熵损失函数。在本文中将讲述两者含义与响应的运用区别。2.平方损失函数平方损失函数较为... 博文 来自: m_buddy的博客
L1损失函数和L2损失函数
05-11 阅读数 187
L1损失函数:最小化绝对误差,因此L1损失对异常点有较好的适应更鲁棒,不可导,有多解,解的稳定性不好。关于L1损失函数的不连续的问题,可以通过平滑L1损失函数代替:L2损失函数:最小化平方误差,因此L... 博文 来自: Andy_Zhao的博客
<div class="recommend-loading-box">
<img src="https://csdnimg.cn/release/phoenix/images/feedLoading.gif">
</div>
<div class="recommend-end-box" style="display: block;">
<p class="text-center">没有更多推荐了,<a href="https://blog.csdn.net/" class="c-blue c-blue-hover c-blue-focus">返回首页</a></p>
</div>
</div>
</main>
<aside>
<div id="asideProfile" class="aside-box">
<!-- <h3 class="aside-title">个人资料</h3> -->
<div class="profile-intro d-flex">
<div class="avatar-box d-flex justify-content-center flex-column">
<a href="https://blog.csdn.net/qq_34555202">
<img src="https://avatar.csdn.net/C/C/F/3_qq_34555202.jpg" class="avatar_pic">
<img src="https://g.csdnimg.cn/static/user-reg-year/1x/3.png" class="user-years">
</a>
</div>
<div class="user-info d-flex flex-column">
<p class="name csdn-tracking-statistics tracking-click" data-report-click="{"mod":"popu_379"}">
<a href="https://blog.csdn.net/qq_34555202" class="" id="uid">qq_34555202</a>
</p>
<p class="personal-home-page"><a target="_blank" href="https://me.csdn.net/qq_34555202">TA的个人主页 ></a></p>
</div>
<div class="opt-box d-flex justify-content-center flex-column">
<span class="csdn-tracking-statistics tracking-click" data-report-click="{"mod":"popu_379"}">
<a class="btn btn-sm btn-red-hollow attention" id="btnAttent">关注</a>
</span>
</div>
</div>
<div class="data-info d-flex item-tiling">
<dl class="text-center" title="20">
<dt><a href="https://blog.csdn.net/qq_34555202?t=1">原创</a></dt>
<dd><a href="https://blog.csdn.net/qq_34555202?t=1"><span class="count">20</span></a></dd>
</dl>
<dl class="text-center" id="fanBox" title="1">
<dt>粉丝</dt>
<dd><span class="count" id="fan">1</span></dd>
</dl>
<dl class="text-center" title="1">
<dt>喜欢</dt>
<dd><span class="count">1</span></dd>
</dl>
<dl class="text-center" title="0">
<dt>评论</dt>
<dd><span class="count">0</span></dd>
</dl>
</div>
<div class="grade-box clearfix">
<dl>
<dt>等级:</dt>
<dd>
<a href="https://blog.csdn.net/home/help.html#level" title="2级,点击查看等级说明" target="_blank">
<svg class="icon icon-level" aria-hidden="true">
<use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#csdnc-bloglevel-2"></use>
</svg>
</a>
</dd>
</dl>
<dl>
<dt>访问:</dt>
<dd title="12617">
1万+ </dd>
</dl>
<dl>
<dt>积分:</dt>
<dd title="344">
344 </dd>
</dl>
<dl title="294775">
<dt>排名:</dt>
<dd>29万+</dd>
</dl>
</div>
<div class="badge-box d-flex">
<span>勋章:</span>
<div class="badge d-flex">
<div class="icon-badge" title="持之以恒">
<div class="mouse-box">
<img src="https://g.csdnimg.cn/static/user-medal/chizhiyiheng.svg" alt="">
<div class="icon-arrow"></div>
</div>
<div class="grade-detail-box">
<div class="pos-box">
<div class="left-box d-flex justify-content-center align-items-center flex-column">
<img src="https://g.csdnimg.cn/static/user-medal/chizhiyiheng.svg" alt="">
<p>持之以恒</p>
</div>
<div class="right-box">
授予每个自然月内发布4篇或4篇以上原创或翻译IT博文的用户。不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累! </div>
</div>
</div>
</div>
</div>
<script>
(function ($) {
setTimeout(function(){
$('div.icon-badge.show-moment').removeClass('show-moment');
}, 5000);
})(window.jQuery)
</script>
</div>
个人分类
热门文章
-
<a href="https://blog.csdn.net/qq_34555202/article/details/82625761"> DTW简介 </a> <p class="read">阅读数 <span>3195</span></p> </li> <li> <a href="https://blog.csdn.net/qq_34555202/article/details/81909144"> 协同滤波 </a> <p class="read">阅读数 <span>1648</span></p> </li> <li> <a href="https://blog.csdn.net/qq_34555202/article/details/82491037"> 如何选择回归损失函数 </a> <p class="read">阅读数 <span>1461</span></p> </li> <li> <a href="https://blog.csdn.net/qq_34555202/article/details/82020939"> opencv遍历像素的方式 </a> <p class="read">阅读数 <span>695</span></p> </li> <li> <a href="https://blog.csdn.net/qq_34555202/article/details/83832249"> Linux SSH远程文件与文件夹 </a> <p class="read">阅读数 <span>477</span></p> </li> </ul> </div>
<div class="aside-box">
<div class="persion_article">
<div class="right_box footer_box csdn-tracking-statistics"> <div class="contact-box" id="footer-contact-box"><div class="img-box"><img src="https://csdnimg.cn/pubfooter/images/csdn-cxrs.png" alt="程序人生" style="padding: 6px;"><p class="app-text">程序人生</p></div><div class="img-box fr"><a href="https://blog.csdn.net/csdnnews?utm_source=csdn_footer" target="_blank"><img style="padding:6px;" src="//csdnimg.cn/pubfooter/images/csdn-zx.png" alt="CSDN资讯"></a><p class="app-text">CSDN资讯</p></div></div> <div class="contact-info"> <p><svg width="16" height="16" xmlns="http://www.w3.org/2000/svg"><path d="M2.167 2h11.666C14.478 2 15 2.576 15 3.286v9.428c0 .71-.522 1.286-1.167 1.286H2.167C1.522 14 1 13.424 1 12.714V3.286C1 2.576 1.522 2 2.167 2zm-.164 3v1L8 10l6-4V5L8 9 2.003 5z" fill="#5c5c5c" fill-rule="evenodd"></path></svg><a href="mailto:webmaster@csdn.net" target="_blank"><span class="txt">kefu@csdn.net</span></a> <em class="width126"><svg t="1538013544186" width="17" height="17" style="" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="23556" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><style type="text/css"></style></defs><path d="M902.60033922 650.96445566c-18.0718526-100.84369837-94.08399771-166.87723736-94.08399771-166.87723737 10.87530062-91.53186599-28.94715402-107.78733693-28.94715401-107.78733691C771.20003413 93.08221664 517.34798062 98.02553561 511.98620441 98.16348824 506.65661791 98.02553561 252.75857992 93.08221664 244.43541101 376.29988138c0 0-39.79946279 16.25547094-28.947154 107.78733691 0 0-75.98915247 66.03353901-94.0839977 166.87723737 0 0-9.63372291 170.35365477 86.84146124 20.85850523 0 0 21.70461757 56.79068296 61.50407954 107.78733692 0 0-71.1607951 23.19910867-65.11385185 83.46161052 0 0-2.43717093 67.16015592 151.93232126 62.56172014 0 0 108.5460788-8.0932473 141.10300432-52.14626271H526.33792324c32.57991817 44.05301539 141.10300431 52.1462627 141.10300431 52.14626271 154.3235077 4.59843579 151.95071457-62.56172013 151.95071457-62.56172014 6.00095876-60.26250183-65.11385185-83.46161053-65.11385185-83.46161052 39.77647014-50.99665395 61.4810877-107.78733693 61.4810877-107.78733692 96.45219231 149.49514952 86.84146124-20.85850523 86.84146125-20.85850523" p-id="23557" fill="#5c5c5c"></path></svg><a href="http://wpa.b.qq.com/cgi/wpa.php?ln=1&key=XzgwMDE4MDEwNl80ODc3MzVfODAwMTgwMTA2XzJf" class="qqcustomer_s" target="_blank"><span class="txt">QQ客服</span></a></em></p> <p><em class="width126"><svg t="1538012951761" width="17" height="17" style="" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="23083" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><style type="text/css"></style></defs><path d="M466.4934485 880.02006511C264.6019863 859.18313878 107.13744214 688.54706608 107.13744214 481.14947309 107.13744214 259.68965394 286.68049114 80.14660493 508.14031029 80.14660493s401.00286817 179.54304901 401.00286814 401.00286816v1.67343191C908.30646249 737.58941724 715.26799489 943.85339507 477.28978337 943.85339507c-31.71423369 0-62.61874229-3.67075386-92.38963569-10.60739903 30.09478346-11.01226158 56.84270313-29.63593923 81.5933008-53.22593095z m-205.13036267-398.87059202a246.77722444 246.77722444 0 0 0 493.5544489 0 30.85052691 30.85052691 0 0 0-61.70105383 0 185.07617062 185.07617062 0 0 1-370.15234125 0 30.85052691 30.85052691 0 0 0-61.70105382 0z" p-id="23084" fill="#5c5c5c"></path></svg><a href="http://bbs.csdn.net/forums/Service" target="_blank"><span class="txt">客服论坛</span></a></em> <svg t="1538013874294" width="17" height="17" style="" viewBox="0 0 1194 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="23784" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><style type="text/css"></style></defs><path d="M1031.29689505 943.85339507h-863.70679012A71.98456279 71.98456279 0 0 1 95.60554212 871.86883228v-150.85178906c0-28.58329658 16.92325492-54.46750945 43.13135785-65.93861527l227.99160176-99.75813425c10.55341735-4.61543317 18.24580594-14.0082445 20.72896295-25.23643277l23.21211998-105.53417343a71.95757195 71.95757195 0 0 1 70.28414006-56.51881307h236.95255971c33.79252817 0 63.02360485 23.5090192 70.28414004 56.51881307l23.21211997 105.53417343c2.48315701 11.25517912 10.17554562 20.62099961 20.72896296 25.23643277l227.99160177 99.75813425a71.98456279 71.98456279 0 0 1 43.13135783 65.93861527v150.85178906A71.98456279 71.98456279 0 0 1 1031.26990421 943.85339507z m-431.85339506-143.94213475c143.94213474 0 143.94213474-48.34058941 143.94213474-107.96334876s-64.45411922-107.96334877-143.94213474-107.96334877c-79.51500637 0-143.94213474 48.34058941-143.94213475 107.96334877s0 107.96334877 143.94213475 107.96334876zM1103.254467 296.07330247v148.9894213a35.97878598 35.97878598 0 0 1-44.15700966 35.03410667l-143.94213473-33.57660146a36.0057768 36.0057768 0 0 1-27.80056231-35.03410668V296.1002933c-35.97878598-47.98970852-131.95820302-71.98456279-287.91126031-71.98456279S347.53801649 248.11058478 311.53223967 296.1002933v115.385829c0 16.73431906-11.52508749 31.25538946-27.80056233 35.03410668l-143.94213473 33.57660146A35.97878598 35.97878598 0 0 1 95.63253297 445.06272377V296.07330247C162.81272673 152.13116772 330.77670658 80.14660493 599.47049084 80.14660493s436.63077325 71.98456279 503.81096699 215.92669754z" p-id="23785" fill="#5c5c5c"></path></svg>400-660-0108 </p> <p style="text-align:center">工作时间 8:30-22:00</p> </div> <div class="bg-gray"> <div class="feed_copyright"> <p><a class="right-dotte" href="//www.csdn.net/company/index.html#about" target="_blank">关于我们</a><a href="//www.csdn.net/company/index.html#recruit" target="_blank" class="right-dotte">招聘</a><a href="//www.csdn.net/company/index.html#contact" target="_blank" class="right-dotte">广告服务</a> <a href="https://www.csdn.net/gather/A" target="_blank" class="footer_baidu"> 网站地图</a></p> <p class="fz12_baidu"><a href="https://zn.baidu.com/cse/home/index" target="_blank"><svg width="13" height="14" xmlns="http://www.w3.org/2000/svg"><path d="M8.392 7.013c1.014 1.454 2.753 2.8 2.753 2.8s1.303 1.017.47 2.98c-.833 1.962-3.876.942-3.876.942s-1.122-.36-2.424-.072c-1.303.291-2.426.181-2.426.181s-1.523.037-1.957-1.888c-.434-1.927 1.52-2.982 1.666-3.161.145-.183 1.159-.873 1.81-1.963.653-1.09 2.608-1.962 3.984.181zm1.23 5.706V9.346H8.64v2.534h-.937s-.3-.044-.356-.285V9.33l-.925.015v2.518s.042.627.925.855h2.277zm-3.685.013V7.951l-.896-.014v1.295H3.987s-1.054.086-1.422 1.28c-.129.798.114 1.266.156 1.368.043.099.383.682 1.238.852h1.978zm-2.433-1.45c-.087-.286.013-.613.057-.741.042-.128.228-.427.61-.54h.855v1.948h-.797s-.555-.029-.725-.668zm6.877-8.775c-.143.909-.865 2.108-1.99 1.962-1.121-.144-1.375-1.16-1.267-2.179C7.214 1.458 8.21.18 9.007.364c.796.18 1.52 1.235 1.374 2.143zm-4.09-.345c0 1.197-.68 2.164-1.52 2.164S3.25 3.36 3.25 2.162C3.25.967 3.932 0 4.77 0c.842 0 1.52.967 1.52 2.162zm4.854 2.09c1.34 0 1.701 1.309 1.701 1.743 0 .438.182 2.29-1.485 2.326-1.667.037-1.737-1.126-1.737-1.96 0-.874.179-2.11 1.52-2.11zm-7.93.581c.045.398.253 2.217-1.27 2.544C.427 7.704-.14 5.947.028 5.124c0 0 .18-1.78 1.412-1.89.98-.085 1.7.986 1.774 1.6z" fill="#999" fill-rule="evenodd"></path></svg><em>百度提供站内搜索</em></a> <a href="http://www.miibeian.gov.cn/publish/query/indexFirst.action" target="_blank" class="ml14">京ICP备19004658号</a></p> <p class="fz12_baidu">©1999-2019 北京创新乐知网络技术有限公司 </p> </div> </div> <div class="allow-info-box"> <p><a href="https://csdnimg.cn/cdn/content-toolbar/csdn-ICP.png" target="_blank">经营性网站备案信息</a> <em class="width126"><a href="http://www.cyberpolice.cn/" target="_blank"><span>网络110报警服务</span></a></em></p> <p><a href="http://www.bjjubao.org/" target="_blank"><span>北京互联网违法和不良信息举报中心</span></a></p> <p><a href="http://www.12377.cn/" target="_blank"><span>中国互联网举报中心</span></a><a href="https://download.csdn.net/index.php/tutelage/" target="_blank"><span style="margin-left:8px">家长监护</span></a><a href="https://blog.csdn.net/blogdevteam/article/details/90369522" target="_blank"><span style="margin-left:8px">版权申诉</span></a></p> </div> </div></div>
</div>
</div>