isToeplitzMatrix-托普利茨矩阵

题意

给你一个 m x n 的矩阵 matrix 。如果这个矩阵是托普利茨矩阵,返回 true ;否则,返回 false 。

如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。

示例 1:

输入:matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
输出:true
解释:
在上述矩阵中, 其对角线为:
“[9]”, “[5, 5]”, “[1, 1, 1]”, “[2, 2, 2]”, “[3, 3]”, “[4]”。
各条对角线上的所有元素均相同, 因此答案是 True 。

示例 2:

输入:matrix = [[1,2],[2,2]]
输出:false
解释:
对角线 “[1, 2]” 上的元素不同。

提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 20
0 <= matrix[i][j] <= 99

解题思路

这里我们根据题意,将这个题目拆成两个部分,一个是下三角(由每一行向右下45°分割)
第二部分,上三角(每一列向右下45°分割,不包括第一列)
这两个部分判断基本相同,以下三角为例
矩阵的坐标判断,右下角相比较于左上角即横坐标加一,纵坐标加一
当前行的一个点与之后每一行的点如果有不同的话,直接返回false
如果都相同,转到下一行,重复上一步骤。

代码演示

class Solution {
    public boolean isToeplitzMatrix(int[][] matrix) {
        int m=matrix.length;
        int n=matrix[0].length;
          for(int i=0;i<m;i++)
          {
              int han=i+1;
              int lie=1;
              while (han<m&&lie<n)
              {
                  if(matrix[han][lie]!=matrix[han-1][lie-1])
                      return false;
                  han++;
                  lie++;
              }
          }
        for(int i=1;i<n;i++)
        {
            int lie=i+1;
            int han=1;
            while (han<m&&lie<n)
            {
                if(matrix[han][lie]!=matrix[han-1][lie-1])
                    return false;
                han++;
                lie++;
            }
        }
          return true;
    }
}

效果

info
解答成功:
执行耗时:1 ms,击败了100.00% 的Java用户
内存消耗:38.8 MB,击败了11.67% 的Java用户

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值