题意
给你一个 m x n 的矩阵 matrix 。如果这个矩阵是托普利茨矩阵,返回 true ;否则,返回 false 。
如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。
示例 1:
输入:matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
输出:true
解释:
在上述矩阵中, 其对角线为:
“[9]”, “[5, 5]”, “[1, 1, 1]”, “[2, 2, 2]”, “[3, 3]”, “[4]”。
各条对角线上的所有元素均相同, 因此答案是 True 。
示例 2:
输入:matrix = [[1,2],[2,2]]
输出:false
解释:
对角线 “[1, 2]” 上的元素不同。
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 20
0 <= matrix[i][j] <= 99
解题思路
这里我们根据题意,将这个题目拆成两个部分,一个是下三角(由每一行向右下45°分割)
第二部分,上三角(每一列向右下45°分割,不包括第一列)
这两个部分判断基本相同,以下三角为例
矩阵的坐标判断,右下角相比较于左上角即横坐标加一,纵坐标加一
当前行的一个点与之后每一行的点如果有不同的话,直接返回false
如果都相同,转到下一行,重复上一步骤。
代码演示
class Solution {
public boolean isToeplitzMatrix(int[][] matrix) {
int m=matrix.length;
int n=matrix[0].length;
for(int i=0;i<m;i++)
{
int han=i+1;
int lie=1;
while (han<m&&lie<n)
{
if(matrix[han][lie]!=matrix[han-1][lie-1])
return false;
han++;
lie++;
}
}
for(int i=1;i<n;i++)
{
int lie=i+1;
int han=1;
while (han<m&&lie<n)
{
if(matrix[han][lie]!=matrix[han-1][lie-1])
return false;
han++;
lie++;
}
}
return true;
}
}
效果
info
解答成功:
执行耗时:1 ms,击败了100.00% 的Java用户
内存消耗:38.8 MB,击败了11.67% 的Java用户