weka apriori参数设置意义

本文详细介绍了Weka中Apriori算法的参数设置,包括挖掘类关联规则、类属性索引、支持度迭代递减单位、最小支持度下界等关键选项。还探讨了度量类型的多种选择,如置信度、提升度和确信度,以及它们在衡量规则关联程度中的作用。此外,提到了规则的数量、输出项集、移除缺失值、重要性测试和算法运行模式等设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.        car 如果设为真,则会挖掘类关联规则而不是全局关联规则。

2.        classindex 类属性索引。如果设置为-1,最后的属性被当做类属性。

3.        delta 以此数值为迭代递减单位。不断减小支持度直至达到最小支持度或产生了满足数量要求的规则。

4.        lowerBoundMinSupport 最小支持度下界。

5.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值