【深度学习】
PlusTang124
计算机视觉小菜鸟一枚
展开
-
Keras 切换后端(Theano和TensorFlow)
实验室新装了keras,发现keras默认后端是tensorflow,想换回theano,看了官方文档也没搞懂,最终搞定,很简单。 中文文档的描述:keras中文文档,切换后端其实就是在C:\Users\75538(75538是我的windos用户名字,找你对应的用户名就行)下有个文件夹.keras,里面有keras.json文件,改一下里面的内容就好了,如果没有文件夹和文件,手动创建就行。用th原创 2016-09-22 21:15:33 · 30703 阅读 · 11 评论 -
caffe+pycaffe+VS2013+GTX980+Win10 64位安装
因为之前theano更新默认后端改为tensorflow,怎么该后端都不行,就试试caffe吧 参考了这两篇博客,安装也不难。 caffe学习(1):多平台下安装配置Caffe - fish的专栏 - 博客频道 - CSDN.NET Windows下caffe安装详解(cpu+gpu+matcaffe+pycaffe) - 博客频道 - CSDN.NET下面是一个简易的步骤和注意事项:步骤安原创 2016-09-22 20:31:31 · 1638 阅读 · 1 评论 -
caffe+python 使用训练好的VGG16模型 对 单张图片进行分类,输出置信度
网上看了一堆都是图片转lmdb格式,然后测试总的准确率,我想测试每张图片的top1,top2以及对应置信度是多少,摸索了一下午+一晚上终于搞定,期间遇到不少坑!!!同时感谢实验室博士师兄一块帮我找bug说明:数据集是上海BOT大赛的(12种动物),网上下载的vgg16权重文件,并且修改输出类别为12,对最后三层全连接网络训练了8个小时,top1准确率为80%,top5准确率95%使用的测试图片是一个原创 2016-10-02 22:12:13 · 26718 阅读 · 38 评论 -
深度学习总结(2016.9--2016.10)
原本的打算是参加上海Bot大赛,在比赛中学习一下相关知识,就是想入门而已。开学半个月一直没找到状态,只是上上课。后来在师兄的帮助下,开始逐渐着手比赛的事情,虽然最终没有赶上在比赛截至前提交一版测试。但学了不少,不亏!大致记录一下这一个月做的事情:keras篇win10下先配置keras,看keras文档,用theano后端跑了mnsit数据集,Dogs and Cats 数据集熟悉keras后,原创 2016-10-13 18:31:49 · 1037 阅读 · 9 评论 -
关于ML、DL中的一些问题(2)——数据归一化方法
线性函数归一化(Min-Max scaling) 也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下: x∗=x−minmax−min\ x^* = \frac{x-min}{max-min}0均值标准化(Z-score) 这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数原创 2016-12-09 15:31:31 · 1171 阅读 · 0 评论 -
关于ML、DL中的一些问题(1)——数据归一化的作用
1.为什么要进行数据归一化?在进行数据分析的时候,什么情况下需要对数据进行标准化处理? 归一化首先在维数非常多的时候,可以防止某一维或某几维对数据影响过大,其次可以程序可以运行更快。方法很多,min-max,z-score,p范数等 主要看模型是否具有伸缩不变性。 有些模型在各个维度进行不均匀伸缩后,最优解与原来不等价,例如SVM。对于这样的模型,除非本来各维数据的分布范围就转载 2016-12-09 14:40:57 · 4500 阅读 · 0 评论 -
数据不平衡处理----smote算法
实习时候要训练一个模型,一批衣服数据分布太不均匀了,结果被告知简单处理下就好了,数量太小的类别直接扔掉,数量太多的类别随机抽一部分,数量不多也不少的就直接copy到指定数量就好………………好Low啊 就去查了查,对于这个问题,貌似也没特别好的方法,主要两方面入手: 1.对数据进行采样(over-sampling和under-sampling) 2.训练时调整惩罚权重其中,smote算法算就是o原创 2017-02-16 14:55:07 · 8152 阅读 · 3 评论 -
caffe Resnet-50 finetune 所有代码+需要注意的地方
之前一直只专注于VGG-16,围绕VGG-16做了很多实验,心想其他网络也都差不多,这次实习时候又是分类问题,就心想换一个网络试试,因为数据有240W,比较大,就选Resnet吧,参数少,训练快,效果还好。看论文的结果Resnet-50和101、152差距也不算太大,于是选了最小的Resnet-50。 下面是论文中在ImageNet上的测试结果: 言归正转,说说要注意到点(我用的caffe)原创 2017-02-21 00:16:48 · 50989 阅读 · 62 评论