虫食算
输入:bug.in 输出:标准输出设备
所谓虫食算,就是原先的算式中有一部分被虫子啃掉了,需要我们根据剩下的数字来判定被啃掉的字母。来看一个简单的例子:
43#9865#045
+ 8468#6633
44445509678
其中#号代表被虫子啃掉的数字。根据算式,我们很容易判断:第一行的两个数字分别是5和3,第二行的数字是5。
现在,我们对问题做两个限制:
首先,我们只考虑加法的虫食算。这里的加法是N进制加法,算式中三个数都有N位,允许有前导的0。
其次,虫子把所有的数都啃光了,我们只知道哪些数字是相同的,我们将相同的数字用相同的字母表示,不同的数字用不同的
字母表示。如果这个算式是N进制的,我们就取英文字母表午的前N个大写字母来表示这个算式中的0到N-1这N个不同的数字:但
是这N个字母并不一定顺序地代表0到N-1)。输入数据保证N个字母分别至少出现一次。
BADC
+ CRDA
DCCC
上面的算式是一个4进制的算式。很显然,我们只要让ABCD分别代表0123,便可以让这个式子成立了。你的任务是,对于给定的
N进制加法算式,求出N个不同的字母分别代表的数字,使得该加法算式成立。输入数据保证有且仅有一组解,
输入:
输入文件中包含若干个测试用例。每个测试用例占4行,第一行有一个正整数N(N<=26),后面的3行每行有一个由大写字母组成
的字符串,分别代表两个加数以及和。这3个字符串左右两端都没有空格,从高位到低位,并且恰好有N位。
输出:
对应每一组测试用例,以一行的形式输出N个数字,分别表示A,B,C……所代表的数字,相邻的两个数字用一个空格隔开,
不能有多余的空格。
样例输入:
5
ABCED
BDACE
EBBAA
class Bug
... {
static boolean finish,hash[],used[];
static int n,stk[]=new int[27];
static String a,b,c,word;
public static void main(String args[])throws Exception
...{
BufferedReader bf=new BufferedReader(new FileReader("bug.in"));
while(bf.ready())
...{
n=Integer.parseInt(bf.readLine());
a=bf.readLine();
b=bf.readLine();
c=bf.readLine();
finish=false;
pre_doing();
dfs(0);
}
}
public static void pre_doing()
...{
word="";
hash=new boolean[256];//字母映射表
for(int i=n-1;i>=0;i--)...{
addup(a.charAt(i));addup(b.charAt(i));addup(c.charAt(i));
}
used=new boolean[27];
}
public static void dfs(int l)...{
int i;
String A,B,C;
if(finish)return;
if(bad())return;
if(modcheck())return;
if(l==n)...{
outsol();
return;
}
for(i=n-1;i>=0;i--)
if(!used[i])...{
used[i]=true;A=a;B=b;C=c;
a=change(A,word.charAt(l),i);
b=change(B,word.charAt(l),i);
c=change(C,word.charAt(l),i);
stk[l]=i;
dfs(l+1);
used[i]=false;a=A;b=B;c=C;
}
}
public static boolean bad()...{
int p, g = 0;
for (int i = n - 1; i >= 0; i --) ...{
if (a.charAt(i) >= n || b.charAt(i) >= n || c.charAt(i) >= n) return false;//字符串没有完全数字化
p = a.charAt(i) + b.charAt(i) + g;
if (p % n != c.charAt(i)) return true;
g = p / n;
}
return false;
}
public static boolean modcheck() ...{
int i, p, p1, p2;
//a + b = c, all know
for (i = n - 1; i >= 0; i --) ...{
if (a.charAt(i) >= n || b.charAt(i) >= n || c.charAt(i) >= n) continue;
p = (a.charAt(i) + b.charAt(i)) % n;
if (!(p == c.charAt(i) || (p + 1) % n == c.charAt(i))) return true;
}
//a + ? = c
for (i = n - 1; i >= 0; i --) ...{
if (!(a.charAt(i) < n && c.charAt(i) < n && b.charAt(i) >= n)) continue;
p1 = (c.charAt(i) - a.charAt(i) + n) % n;
p2 = (p1 - 1) % n;
if (used[p1] && used[p2]) return true;
}
//? + b = c
for (i = n - 1; i >= 0; i --) ...{
if (!(a.charAt(i) >= n && c.charAt(i) < n && b.charAt(i) < n)) continue;
p1 = (c.charAt(i) - b.charAt(i) + n) % n;
p2 = (p1 - 1) % n;
if (used[p1] && used[p2]) return true;
}
//a + b = ?
for (i = n - 1; i >= 0; i --) ...{
if (!(a.charAt(i) < n && b.charAt(i) < n && c.charAt(i) >= n)) continue;
p1 = (a.charAt(i) + b.charAt(i)) % n;
p2 = (p1 + 1) % n;
if (used[p1] && used[p2]) return true;
}
return false;
}
public static String change(String str, char x, int y) ...{
for (int i = 0; i < n; i ++)
if (str.charAt(i) == x)
str=str.replace(str.charAt(i) , (char)y);
return str;
}
public static void outsol() ...{
int i, ans[]=new int[27];
for (i = 0; i < n; i ++)
ans[word.charAt(i) - 65] = stk[i];
System.out.print(ans[0]);
for (i = 1; i < n; i ++)
System.out.print(" "+ans[i]);
System.out.println();
finish = true;
}
public static void addup(char ch) ...{
if (!hash[ch]) ...{
hash[ch] = true;
word = word + ch;
}
}
}