虫食算(穷举法)

虫食算
输入:bug.in 输出:标准输出设备
所谓虫食算,就是原先的算式中有一部分被虫子啃掉了,需要我们根据剩下的数字来判定被啃掉的字母。来看一个简单的例子:
43#9865#045
+ 8468#6633
44445509678
其中#号代表被虫子啃掉的数字。根据算式,我们很容易判断:第一行的两个数字分别是5和3,第二行的数字是5。
现在,我们对问题做两个限制:
首先,我们只考虑加法的虫食算。这里的加法是N进制加法,算式中三个数都有N位,允许有前导的0。
其次,虫子把所有的数都啃光了,我们只知道哪些数字是相同的,我们将相同的数字用相同的字母表示,不同的数字用不同的
字母表示。如果这个算式是N进制的,我们就取英文字母表午的前N个大写字母来表示这个算式中的0到N-1这N个不同的数字:但
是这N个字母并不一定顺序地代表0到N-1)。输入数据保证N个字母分别至少出现一次。
BADC
+ CRDA
DCCC
上面的算式是一个4进制的算式。很显然,我们只要让ABCD分别代表0123,便可以让这个式子成立了。你的任务是,对于给定的
N进制加法算式,求出N个不同的字母分别代表的数字,使得该加法算式成立。输入数据保证有且仅有一组解,
输入:
输入文件中包含若干个测试用例。每个测试用例占4行,第一行有一个正整数N(N<=26),后面的3行每行有一个由大写字母组成
的字符串,分别代表两个加数以及和。这3个字符串左右两端都没有空格,从高位到低位,并且恰好有N位。
输出:
对应每一组测试用例,以一行的形式输出N个数字,分别表示A,B,C……所代表的数字,相邻的两个数字用一个空格隔开,
不能有多余的空格。
样例输入:
5
ABCED
BDACE
EBBAA

import  java.io. * ;
class  Bug
{
    
static boolean finish,hash[],used[];
    
static int n,stk[]=new int[27];
    
static String a,b,c,word;
    
public static void main(String args[])throws Exception
    
{
        BufferedReader bf
=new BufferedReader(new FileReader("bug.in"));
        
while(bf.ready())
        
{
            n
=Integer.parseInt(bf.readLine());
            a
=bf.readLine();
            b
=bf.readLine();
            c
=bf.readLine();
            finish
=false;
            pre_doing();
            dfs(
0);            
        }

    }


    
public static void pre_doing()
    
{
        word
="";
        hash
=new boolean[256];//字母映射表
        for(int i=n-1;i>=0;i--){
            addup(a.charAt(i));addup(b.charAt(i));addup(c.charAt(i));
        }

        used
=new boolean[27];
    }


    
public static void dfs(int l){
        
int i;
        String A,B,C;
        
if(finish)return;
        
if(bad())return;
        
if(modcheck())return;
        
if(l==n){
            outsol();
            
return;
        }

        
for(i=n-1;i>=0;i--)
            
if(!used[i]){
                used[i]
=true;A=a;B=b;C=c;
                a
=change(A,word.charAt(l),i);
                b
=change(B,word.charAt(l),i);
                c
=change(C,word.charAt(l),i);
                stk[l]
=i;
                dfs(l
+1);
                used[i]
=false;a=A;b=B;c=C;
            }

    }


    
public static boolean bad(){
        
int p, g = 0;
        
for (int i = n - 1; i >= 0; i --{
            
if (a.charAt(i) >= n || b.charAt(i) >= n || c.charAt(i) >= n) return false;//字符串没有完全数字化
            p = a.charAt(i) + b.charAt(i) + g;
            
if (p % n != c.charAt(i)) return true;
            g 
= p / n;
        }

        
return false;
    }


    
public static boolean modcheck() {
        
int i, p, p1, p2;
        
//a + b = c, all know
        for (i = n - 1; i >= 0; i --{
            
if (a.charAt(i) >= n || b.charAt(i) >= n || c.charAt(i) >= n) continue;
            p 
= (a.charAt(i) + b.charAt(i)) % n;
            
if (!(p == c.charAt(i) || (p + 1% n == c.charAt(i))) return true;
        }

        
        
//a + ? = c
        for (i = n - 1; i >= 0; i --{
            
if (!(a.charAt(i) < n && c.charAt(i) < n && b.charAt(i) >= n)) continue;
            p1 
= (c.charAt(i) - a.charAt(i) + n) % n;
            p2 
= (p1 - 1% n;
            
if (used[p1] && used[p2]) return true;
        }

        
        
//? + b = c
        for (i = n - 1; i >= 0; i --{
            
if (!(a.charAt(i) >= n && c.charAt(i) < n && b.charAt(i) < n)) continue;
            p1 
= (c.charAt(i) - b.charAt(i) + n) % n;
            p2 
= (p1 - 1% n;            
            
if (used[p1] && used[p2]) return true;
        }

        
        
//a + b = ?
        for (i = n - 1; i >= 0; i --{
            
if (!(a.charAt(i) < n && b.charAt(i) < n && c.charAt(i) >= n)) continue;
            p1 
= (a.charAt(i) + b.charAt(i)) % n;
            p2 
= (p1 + 1% n;
            
if (used[p1] && used[p2]) return true;
        }
    
        
return false;
    }

    
    
public static String change(String str, char x, int y) {
        
for (int i = 0; i < n; i ++)
            
if (str.charAt(i) == x)
                str
=str.replace(str.charAt(i) , (char)y);        
            
return str;
    }


    
public static void outsol() {
        
int i, ans[]=new int[27];
        
        
for (i = 0; i < n; i ++)
            ans[word.charAt(i) 
- 65= stk[i];
        
        System.out.print(ans[
0]);
        
for (i = 1; i < n; i ++)
            System.out.print(
" "+ans[i]);
        System.out.println();
        finish 
= true;
    }


    
public static void addup(char ch) {
        
if (!hash[ch]) {
            hash[ch] 
= true;
            word 
= word + ch;
        }

    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值