关于多维图形在2D平面投影的个人理解

文章探讨了多维空间的概念,通过将二维图形如三角形、四边形扩展到三维空间,形成新的立体结构,并进一步解释如何在四维空间中扩展三角体和正方体。作者提到高维形状在低维的投影可以变形,但认为高维图形在实际想象中具有挑战性。文章还提到了高维运算在解决问题上的类比,比如复数在解决二维问题上的作用,以及时间与多维度的关系,暗示时间可能在每个维度中都存在,类似于量子坍缩的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网上有很多关于多维空间的描述,这里分享一下我的个人理解

假设在二维空间中有两个图形,三角形、四边形,画面如下

以如下规律在三维空间展开

  • 对于三角形,在三维空间中添加一点,和其连接,使得每个面都为三角形
  • 对于四边形,在三维空间中需要添加四点,并连接相应的点,使得每个面都为四边形。

那么新的形状在2维空间的投影就变成

按照同样的规律在四维空间展开

  • 对于三角体,在第四维空间添加一个点,并和三维中所有点连接,使得每个六个边都能围成一个三角体
  • 对于正方体,在第四维空间添加一个四方体,和三维中的八个点连接,使得每八个面都能围成一个正方体

那么新的形状在2维空间的投影就变成

高维形状在低维投影可变形,且依然符合形状特征

将上面的投影适当变形,就能看到网上说的超三角体、超正方体,但我觉得并没有意义,因为在更高的维度,这种形状难以想象,反倒是图3更适合扩展为多维图形

个人理解多维图形的意义

  • 高维运算可以像【复数】一样用来解决低一维度的数学问题
  • 【时间】不是四维,反而更像薛定谔、量子坍缩,存在于每一个维度,是一种不可逆的变化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值