LangChain第一讲:如何调用deepseek大模型进行对话?(超详细步骤,100%可执行)

如何调用LLM大模型进行对话

环境准备

安装LangChain库:

pip install langchain langchain_openai

在这里插入图片描述

获取OpenAI API密钥(官网申请),并设置为环境变量:

Linux系统:(执行以下命令):
export OPENAI_API_KEY="你的密钥"

如果你想使用国内的大模型厂商,例如deepseek,kimi,阿里百炼,腾讯等,这些都支持openai的调用,只需要再设置多一个环境变量

export base_url="大模型厂商api的url"
Windows系统:
set OPENAI_API_KEY=你的密钥

使用echo命令来验证openai_api_key环境变量是否设置成功
在这里插入图片描述

如果你想使用国内的大模型厂商,例如deepseek,kimi,阿里百炼,腾讯等,这些都支持openai的调用,只需要再设置多一个环境变量

set base_url=大模型厂商api的url

使用echo命令来验证base_url环境变量是否设置成功
在这里插入图片描述

如果你对于在不同系统设置环境变量有疑问的话,可以查看这两篇文章
Windows 系统如何设置临时环境变量(命令行方式)
Linux中的export 设置的环境变量是临时的吗?如何永久生效?

新建一个llm_use.py文件

开始使用langchain来编写一个简单调用LLM大模型的python代码:
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
import os

#获取环境变量
url = os.environ.get('base_url')  
api_key = os.environ.get('OPENAI_API_KEY')

#初始化模型
llm = ChatOpenAI(openai_api_key=api_key,model="deepseek-v3",base_url=url)


#根据message创建一个提示模版 system消息是告诉模型扮演什么角色,user消息是代表用户输入的问题
prompt = ChatPromptTemplate.from_messages([
    ("system","你是一名Langchain使用专家"),
    ("user","{input}")
])

#基于LCEL表达式构建LLM链,该表达式类似于linux的pieline语法,从左到右按顺序执行
#首先执行prompt完成提示词模版填充,再将提示词去调用大模型
chain = prompt | llm

#调用链 
# invoke将调用参数传递到prompt提示模版,然后开始按照chain定义的步骤运行
response =chain.invoke({"input":"使用langchain,需要安装哪些包"})

#大模型返回的结果
print(response.content)

运行.py文件

python llm_use.py

输出示例:
在这里插入图片描述

### 如何使用 LangChain4j 调用 DeepSeek 大模型 #### 1. 注册火山引擎账号并获取 API Key 为了调用火山引擎上的 DeepSeek 模型,首先需要注册火山引擎账号,并完成身份认证流程。登录后进入控制台页面,找到 **API 管理** 或者类似的选项,生成专属的 API Key[^2]。 #### 2. 添加 Maven 依赖配置 LangChain4j 是 Java 版本的 LangChain 框架,支持多种大语言模型的集成。在项目中引入 LangChain4j 和相关依赖项时,需编辑 `pom.xml` 文件,添加如下内容: ```xml <dependencies> <!-- LangChain4j Core --> <dependency> <groupId>com.langchain4j</groupId> <artifactId>langchain4j-core</artifactId> <version>0.9.0</version> </dependency> <!-- Volcano Engine DeepSeek Integration --> <dependency> <groupId>com.volcengine</groupId> <artifactId>volc-sdk-java</artifactId> <version>1.7.0</version> </dependency> </dependencies> ``` 上述代码片段展示了如何通过 Maven 构建工具来管理项目的依赖关系。 #### 3. 初始化 DeepSeek 模型对象 加载 DeepSeek 的具体实现可以通过 LangChain4j 提供的标准接口完成。以下是初始化模型的一个简单例子: ```java import com.langchain4j.llm.VolcanoEngineDeepSeek; import com.langchain4j.LLM; public class Main { public static void main(String[] args) { String apiKey = "your-volcano-engine-api-key"; // 替换为实际的 API 密钥 LLM model = new VolcanoEngineDeepSeek(apiKey); System.out.println(model.generate("你好,世界")); } } ``` 此部分实现了对 DeepSeek 模型的基本封装和调用逻辑。 #### 4. 构建本地知识库用于 RAG 应用场景 如果目标是构建检索增强生成 (RAG) 系统,则还需要额外设置一个向量数据库作为存储结构化的文档数据源。可以采用 Milvus 或 Pinecone 这样的第三方服务,或者利用 Hugging Face Datasets 工具集预处理自有资料集合。 假设已经准备好了一个小型的知识库文件夹路径 `/path/to/knowledgebase/` ,那么可以用下面的方式将其嵌入到工作流里: ```java import com.langchain4j.retriever.VectorStoreRetriever; import com.langchain4j.vectorstore.MilvusVectorStore; // 创建向量存储实例 MilvusVectorStore vectorStore = new MilvusVectorStore( "localhost", 19530, "default" ); // 加载已有索引或新建索引 vectorStore.load("/path/to/index"); // 设置检索器参数 VectorStoreRetriever retriever = new VectorStoreRetriever(vectorStore, 5); // 返回前五个最相似的结果 ``` 以上代码说明了如何连接至 Milvus 向量数据库,并定义好查询返回条目的数量限制。 #### 5. 执行完整的 RAG 流程 最后一步就是把前面提到的所有组件串联起来形成闭环的应用程序架构。当接收到用户的提问请求之后,先经过检索阶段找出关联度最高的几篇参考资料摘要;再把这些上下文信息传递给大型语言模型去综合分析作答即可得到最终回复结果。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ven%

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值