机器学习案例实战第二课-欺诈检测—6389人已学习
课程介绍
使用Python数据分析流行的库Numpy,Pandas,Matplotlib, Scikit-learn结合真实数据集展开可视化特征分析与机器学习建模和评估。每次课程涉及一个完整的案例,基于案例讲解python库的使用以及如何建立机器学习模型,对涉及到的机器学习算法给出通俗易懂的解释,帮助大家掌握经典机器学习算法,并应用在实际的案例中。
课程收益
基于真实数据集,全程代码实战,使用python库快速处理分析,实战机器学习经典算法。
讲师介绍
唐宇迪 更多讲师课程
计算机博士,专注于机器学习与计算机视觉领域,深度学习领域一线实战讲师。在图像识别领域有着丰富经验,实现过包括人脸识别,物体识别,关键点检测等多种应用的新算法。 参与多个国家级计算机视觉项目,多年数据领域培训经验,丰富的教学讲解经验,出品多套机器学习与深度学习系列课程,课程生动形象,风格通俗易懂。
课程大纲
1. 案例背景及挑战 12:09
2. 模型评估方法 12:16
3. 逻辑回归与交叉验证 8:40
4. 参数对模型的影响 10:40
5. 模型预测效果 8:49
6. 逻辑回归阈值作用 7:55
7. 过采样解决方案 11:21
8. 答疑与讨论 13:14
大家可以点击【 查看详情】查看我的课程
课程介绍
使用Python数据分析流行的库Numpy,Pandas,Matplotlib, Scikit-learn结合真实数据集展开可视化特征分析与机器学习建模和评估。每次课程涉及一个完整的案例,基于案例讲解python库的使用以及如何建立机器学习模型,对涉及到的机器学习算法给出通俗易懂的解释,帮助大家掌握经典机器学习算法,并应用在实际的案例中。
课程收益
基于真实数据集,全程代码实战,使用python库快速处理分析,实战机器学习经典算法。
讲师介绍
唐宇迪 更多讲师课程
计算机博士,专注于机器学习与计算机视觉领域,深度学习领域一线实战讲师。在图像识别领域有着丰富经验,实现过包括人脸识别,物体识别,关键点检测等多种应用的新算法。 参与多个国家级计算机视觉项目,多年数据领域培训经验,丰富的教学讲解经验,出品多套机器学习与深度学习系列课程,课程生动形象,风格通俗易懂。
课程大纲
1. 案例背景及挑战 12:09
2. 模型评估方法 12:16
3. 逻辑回归与交叉验证 8:40
4. 参数对模型的影响 10:40
5. 模型预测效果 8:49
6. 逻辑回归阈值作用 7:55
7. 过采样解决方案 11:21
8. 答疑与讨论 13:14
大家可以点击【 查看详情】查看我的课程