机器学习30天进阶实战-唐宇迪-专题视频课程

机器学习30天进阶实战—1155人已学习
课程介绍    
201804021726405967.png
    本课程旨在帮助大家掌握机器学习中的经典算法与实战策略,从实战角度出发,通过实际的案例来讲解算法的应用与提升。进阶篇引入当下热门的计算机视觉与自然语言处理,结合tensorflow框架展开实战分析,帮助同学们使用机器学习中的高阶算法进行实际应用。
课程收益
    课程特色: 1. 风格通俗易懂,最接地气的讲解 2. 丰富案例教学,全程皆实战 3. 计算机视觉与自然语言处理双管齐下
讲师介绍
    唐宇迪 更多讲师课程
    计算机博士,专注于机器学习与计算机视觉领域,深度学习领域一线实战讲师。在图像识别领域有着丰富经验,实现过包括人脸识别,物体识别,关键点检测等多种应用的新算法。 参与多个国家级计算机视觉项目,多年数据领域培训经验,丰富的教学讲解经验,出品多套机器学习与深度学习系列课程,课程生动形象,风格通俗易懂。
课程大纲
  第1章:集成算法原理与实战
    1. 系列课程概述  9:17
    2. 集成算法概述  7:49
    3. 随机森林概述  7:29
    4. 3种集成思想  8:42
    5. 数据简介与处理  13:51
    6. 单个树模型实例  13:32
    7. 树模型集成  9:13
    8. 集成效果  8:04
    9. 课间讨论  11:29
    10. 课后讨论  9:53
  第2章:随机森林与学习曲线
    1. 1-stacking模块  7:54
    2. 特征预处理  10:39
    3. 数值特征  7:29
    4. 数值变化  12:13
    5. 文本停用词  7:58
    6. 文本特征  14:36
    7. 图像组成  5:28
    8. 特征重要性  7:56
    9. 课间讨论  10:57
  第3章:降维算法-PCA与LDA
    1. 数据越多越好吗  11:59
    2. 随机参数尝试  8:53
    3. 网格搜索结果  10:35
    4. 线性判别分析概述  8:22
    5. LDA数学原理推导  14:00
    6. Python实现LDA降维算法  16:41
    7. 课间讨论  15:05
    8. 课后讨论  11:02
  第4章:聚类算法原理与实战
    1. PCA基本概念  12:12
    2. 方差与协方差  6:51
    3. PCA结果推导  9:03
    4. PCA实例  7:14
    5. 聚类概述  5:56
    6. kmeans及其可视化  14:58
    7. DBSCAN聚类算法  6:15
    8. 工作流程与可视化展示  13:09
    9. 课间讨论  10:43
    10. 课后讨论  9:01
  第5章:Xgboost调参策略与保险索赔任务
    1. Xgboost概述  9:36
    2. 原理推导  10:11
    3. 得出结论与xgboost安装  8:55
    4. 保险赔偿预测任务概述  10:32
    5. 参数与基本模型  8:41
    6. 调参策略  7:52
    7. 调参结果  9:41
    8. 贝叶斯算法概述  11:39
  第6章:计算机视觉的核心-卷积神经网络
    1. 卷积神经网络概述  12:31
    2. 卷积工作目标  10:58
    3. 卷积计算方法  15:23
    4. 卷积网络参数  11:06
    5. 参数共享  8:05
    6. 池化层结构  6:54
    7. 经典网络架构  16:22
  第7章:tensorflow基础操作
    1. Tensorflow简介与安装  15:46
    2. Tensorflow中的变量  8:10
    3. 变量常用操作  13:38
    4. 实现线性回归算法  15:14
    5. Mnist数据集简介  12:53
    6. 逻辑回归算法  15:26
    7. 神经网络结构  16:21
    8. 卷积网络结构基本定义  17:42
    9. 卷积神经网络迭代  13:53
    10. Cifar-10图像分类任务  16:17
  第8章:猫狗识别与tensorboard可视化展示
    1. 猫狗识别任务概述  13:18
    2. 猫狗识别数据读取  12:03
    3. 猫狗识别网络架构  18:05
    4. 网络迭代训练  16:44
    5. 猫狗测试网络效果  8:39
    6. Tensorboard可视化展示  12:15
    7. Tensorboard展示效果  13:39
    8. Tensorboard统计可视展示  10:16
    9. Tensorboard参数对结果影响展示  17:14
大家可以点击【 查看详情】查看我的课程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪哥有点愁了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值