机器学习30天进阶实战—1155人已学习
课程介绍
本课程旨在帮助大家掌握机器学习中的经典算法与实战策略,从实战角度出发,通过实际的案例来讲解算法的应用与提升。进阶篇引入当下热门的计算机视觉与自然语言处理,结合tensorflow框架展开实战分析,帮助同学们使用机器学习中的高阶算法进行实际应用。
课程收益
课程特色: 1. 风格通俗易懂,最接地气的讲解 2. 丰富案例教学,全程皆实战 3. 计算机视觉与自然语言处理双管齐下
讲师介绍
唐宇迪 更多讲师课程
计算机博士,专注于机器学习与计算机视觉领域,深度学习领域一线实战讲师。在图像识别领域有着丰富经验,实现过包括人脸识别,物体识别,关键点检测等多种应用的新算法。 参与多个国家级计算机视觉项目,多年数据领域培训经验,丰富的教学讲解经验,出品多套机器学习与深度学习系列课程,课程生动形象,风格通俗易懂。
课程大纲
第1章:集成算法原理与实战
1. 系列课程概述 9:17
2. 集成算法概述 7:49
3. 随机森林概述 7:29
4. 3种集成思想 8:42
5. 数据简介与处理 13:51
6. 单个树模型实例 13:32
7. 树模型集成 9:13
8. 集成效果 8:04
9. 课间讨论 11:29
10. 课后讨论 9:53
第2章:随机森林与学习曲线
1. 1-stacking模块 7:54
2. 特征预处理 10:39
3. 数值特征 7:29
4. 数值变化 12:13
5. 文本停用词 7:58
6. 文本特征 14:36
7. 图像组成 5:28
8. 特征重要性 7:56
9. 课间讨论 10:57
第3章:降维算法-PCA与LDA
1. 数据越多越好吗 11:59
2. 随机参数尝试 8:53
3. 网格搜索结果 10:35
4. 线性判别分析概述 8:22
5. LDA数学原理推导 14:00
6. Python实现LDA降维算法 16:41
7. 课间讨论 15:05
8. 课后讨论 11:02
第4章:聚类算法原理与实战
1. PCA基本概念 12:12
2. 方差与协方差 6:51
3. PCA结果推导 9:03
4. PCA实例 7:14
5. 聚类概述 5:56
6. kmeans及其可视化 14:58
7. DBSCAN聚类算法 6:15
8. 工作流程与可视化展示 13:09
9. 课间讨论 10:43
10. 课后讨论 9:01
第5章:Xgboost调参策略与保险索赔任务
1. Xgboost概述 9:36
2. 原理推导 10:11
3. 得出结论与xgboost安装 8:55
4. 保险赔偿预测任务概述 10:32
5. 参数与基本模型 8:41
6. 调参策略 7:52
7. 调参结果 9:41
8. 贝叶斯算法概述 11:39
第6章:计算机视觉的核心-卷积神经网络
1. 卷积神经网络概述 12:31
2. 卷积工作目标 10:58
3. 卷积计算方法 15:23
4. 卷积网络参数 11:06
5. 参数共享 8:05
6. 池化层结构 6:54
7. 经典网络架构 16:22
第7章:tensorflow基础操作
1. Tensorflow简介与安装 15:46
2. Tensorflow中的变量 8:10
3. 变量常用操作 13:38
4. 实现线性回归算法 15:14
5. Mnist数据集简介 12:53
6. 逻辑回归算法 15:26
7. 神经网络结构 16:21
8. 卷积网络结构基本定义 17:42
9. 卷积神经网络迭代 13:53
10. Cifar-10图像分类任务 16:17
第8章:猫狗识别与tensorboard可视化展示
1. 猫狗识别任务概述 13:18
2. 猫狗识别数据读取 12:03
3. 猫狗识别网络架构 18:05
4. 网络迭代训练 16:44
5. 猫狗测试网络效果 8:39
6. Tensorboard可视化展示 12:15
7. Tensorboard展示效果 13:39
8. Tensorboard统计可视展示 10:16
9. Tensorboard参数对结果影响展示 17:14
大家可以点击【 查看详情】查看我的课程
课程介绍
本课程旨在帮助大家掌握机器学习中的经典算法与实战策略,从实战角度出发,通过实际的案例来讲解算法的应用与提升。进阶篇引入当下热门的计算机视觉与自然语言处理,结合tensorflow框架展开实战分析,帮助同学们使用机器学习中的高阶算法进行实际应用。
课程收益
课程特色: 1. 风格通俗易懂,最接地气的讲解 2. 丰富案例教学,全程皆实战 3. 计算机视觉与自然语言处理双管齐下
讲师介绍
唐宇迪 更多讲师课程
计算机博士,专注于机器学习与计算机视觉领域,深度学习领域一线实战讲师。在图像识别领域有着丰富经验,实现过包括人脸识别,物体识别,关键点检测等多种应用的新算法。 参与多个国家级计算机视觉项目,多年数据领域培训经验,丰富的教学讲解经验,出品多套机器学习与深度学习系列课程,课程生动形象,风格通俗易懂。
课程大纲
第1章:集成算法原理与实战
1. 系列课程概述 9:17
2. 集成算法概述 7:49
3. 随机森林概述 7:29
4. 3种集成思想 8:42
5. 数据简介与处理 13:51
6. 单个树模型实例 13:32
7. 树模型集成 9:13
8. 集成效果 8:04
9. 课间讨论 11:29
10. 课后讨论 9:53
第2章:随机森林与学习曲线
1. 1-stacking模块 7:54
2. 特征预处理 10:39
3. 数值特征 7:29
4. 数值变化 12:13
5. 文本停用词 7:58
6. 文本特征 14:36
7. 图像组成 5:28
8. 特征重要性 7:56
9. 课间讨论 10:57
第3章:降维算法-PCA与LDA
1. 数据越多越好吗 11:59
2. 随机参数尝试 8:53
3. 网格搜索结果 10:35
4. 线性判别分析概述 8:22
5. LDA数学原理推导 14:00
6. Python实现LDA降维算法 16:41
7. 课间讨论 15:05
8. 课后讨论 11:02
第4章:聚类算法原理与实战
1. PCA基本概念 12:12
2. 方差与协方差 6:51
3. PCA结果推导 9:03
4. PCA实例 7:14
5. 聚类概述 5:56
6. kmeans及其可视化 14:58
7. DBSCAN聚类算法 6:15
8. 工作流程与可视化展示 13:09
9. 课间讨论 10:43
10. 课后讨论 9:01
第5章:Xgboost调参策略与保险索赔任务
1. Xgboost概述 9:36
2. 原理推导 10:11
3. 得出结论与xgboost安装 8:55
4. 保险赔偿预测任务概述 10:32
5. 参数与基本模型 8:41
6. 调参策略 7:52
7. 调参结果 9:41
8. 贝叶斯算法概述 11:39
第6章:计算机视觉的核心-卷积神经网络
1. 卷积神经网络概述 12:31
2. 卷积工作目标 10:58
3. 卷积计算方法 15:23
4. 卷积网络参数 11:06
5. 参数共享 8:05
6. 池化层结构 6:54
7. 经典网络架构 16:22
第7章:tensorflow基础操作
1. Tensorflow简介与安装 15:46
2. Tensorflow中的变量 8:10
3. 变量常用操作 13:38
4. 实现线性回归算法 15:14
5. Mnist数据集简介 12:53
6. 逻辑回归算法 15:26
7. 神经网络结构 16:21
8. 卷积网络结构基本定义 17:42
9. 卷积神经网络迭代 13:53
10. Cifar-10图像分类任务 16:17
第8章:猫狗识别与tensorboard可视化展示
1. 猫狗识别任务概述 13:18
2. 猫狗识别数据读取 12:03
3. 猫狗识别网络架构 18:05
4. 网络迭代训练 16:44
5. 猫狗测试网络效果 8:39
6. Tensorboard可视化展示 12:15
7. Tensorboard展示效果 13:39
8. Tensorboard统计可视展示 10:16
9. Tensorboard参数对结果影响展示 17:14
大家可以点击【 查看详情】查看我的课程