一、题目描述:329. 矩阵中的最长递增路径(困难)
给定一个整数矩阵,找出最长递增路径的长度。
对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。
示例 1:
输入: nums =
[
[9,9,4],
[6,6,8],
[2,1,1]
]
输出: 4
解释: 最长递增路径为 [1, 2, 6, 9]。
示例 2:输入: nums =
[
[3,4,5],
[3,2,6],
[2,2,1]
]
输出: 4
解释: 最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-path-in-a-matrix
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
二、解题思路
方法一、暴力深度优先搜索递归,对每个点上下左右点,如果符合递增属性(不需要判断是否visited过,因为是递增的不会重复遍历),进行递归,查找递增子序。这种方法会超时
方法二、由于在方法一的基础上,使用一个map dp记录每个节点的最长递增子序列个数。当递归到当前节点的时候,如果当前节点已经存在dp里则直接返回dp里存的值,不要重复递归。
方法三、动态规划,大神的思路:https://leetcode-cn.com/problems/longest-increasing-path-in-a-matrix/solution/ju-zhen-zhong-de-zui-chang-di-zeng-lu-jing-by-leet/
三、代码
class Solution {
public:
int longestIncreasingPath(vector<vector<int>>& matrix) {
if(matrix.size() == 0)
return 0;
map<pair<int,int>,int> dp;
//vector<vector<int>> visited(matrix.size(),vector<int>(matrix[0].size(),0));
int max_len = 1;
for(int i = 0; i < matrix.size();i++)
{
for(int j = 0; j < matrix[i].size(); j ++)
{
//visited[i][j] = 1;
int len_t = 0;
pair<int,int> p(i,j);
if(dp.count(p) > 0)
{
len_t = dp[p];
}
else
{
len_t = getPath(matrix,i,j,dp);
}
//visited[i][j] = 0;
max_len = max(max_len,len_t);
}
}
return max_len;
}
int getPath(vector<vector<int>>& matrix,int i,int j,map<pair<int,int>,int> & dp)
{
int len_r = 0;
if(i-1 >= 0 && matrix[i][j] < matrix[i-1][j])
{
int len_t = 0;
pair<int,int> p(i-1,j);
if(dp.count(p) > 0)
{
len_t = dp[p];
}
else
{
len_t = getPath(matrix,i-1,j,dp);
dp[p] = len_t;
}
len_r = max(len_t,len_r);
}
if(j-1 >= 0 && matrix[i][j] < matrix[i][j-1])
{
int len_t = 0;
pair<int,int> p(i,j-1);
if(dp.count(p) > 0)
{
len_t = dp[p];
}
else{
len_t = getPath(matrix,i,j-1,dp);
dp[p] = len_t;
}
len_r = max(len_t,len_r);
}
if(i+1 <matrix.size() && matrix[i][j] < matrix[i+1][j])
{
int len_t = 0;
pair<int,int> p(i+1,j);
if(dp.count(p) > 0)
{
len_t = dp[p];
}
else{
len_t = getPath(matrix,i+1,j,dp);
dp[p] = len_t;
}
len_r = max(len_t,len_r);
}
if(j+1 < matrix[i].size() && matrix[i][j] < matrix[i][j+1])
{
int len_t = 0;
pair<int,int> p(i,j+1);
if(dp.count(p) > 0)
{
len_t =dp[p];
}
else{
len_t = getPath(matrix,i,j+1,dp);
dp[p] = len_t;
}
len_r = max(len_t,len_r);
}
return len_r + 1;
}
};