一、题目描述:135. 分发糖果(困难)
老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
你需要按照以下要求,帮助老师给这些孩子分发糖果:
每个孩子至少分配到 1 个糖果。
相邻的孩子中,评分高的孩子必须获得更多的糖果。
那么这样下来,老师至少需要准备多少颗糖果呢?示例 1:
输入: [1,0,2]
输出: 5
解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。
示例 2:输入: [1,2,2]
输出: 4
解释: 你可以分别给这三个孩子分发 1、2、1 颗糖果。
第三个孩子只得到 1 颗糖果,这已满足上述两个条件。来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/candy
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
二、解题思路
动态规划
1、创建动态数组bp记录当前i点的所需要分配的糖果,dp[0] = 1;
2、如果ratings[i] > ratings[i-1] ,dp[i] = dp[i-1] + 1。如果ratings[i] <= ratings[i-1]则dp[i] = 1;
3、第二步保证了所有右边孩子如果比左边孩子分数高的话,则右边孩子得到糖果多一根,但是同时存在一个问题,就是当dp[i] == 1的时候,如果左边的孩子分数比右边孩子分数高,并且由于i-2的孩子比i-1孩子分数高使得i-1的孩子得到的糖果也是为1,不满足身边分数高的孩子比分数低的孩子得到糖果多的条件。
所以,需要从右往左再遍历一遍,如果左边孩子分数高,并且左边的孩子的糖果数小于等于右边孩子的时候,dp[i-1] = dp[i]+1;直到i-1 =0;
此时dp[i]所有累加值就是给孩子分配最少的糖果数
三、代码
class Solution {
public:
int candy(vector<int>& ratings) {
vector<int> dp(ratings.size(),0);
int sum = 0;
dp[0] = 1;
//sum = dp[0];
for(int i = 1; i < ratings.size(); i++)
{
if(ratings[i] > ratings[i-1])
{
dp[i] = dp[i-1] + 1;
}
if(ratings[i] <= ratings[i-1])
{
dp[i] = 1;
}
//sum += dp[i];
//int tmp = i;
/*
while(tmp > 0 && ratings[tmp-1] > ratings[tmp] && dp[tmp] >= dp[tmp-1])
{
dp[tmp-1] ++;
tmp--;
sum++;
}
*/
//print(dp);
}
sum = dp[ratings.size()-1];
for(int i = ratings.size() - 1; i > 0; i--)
{
if(ratings[i] < ratings[i-1] && dp[i] >= dp[i-1])
{
dp[i-1] = dp[i] + 1;
}
sum += dp[i-1];
}
return sum;
}
void print(vector<int> & dp)
{
for(int i = 0;i < dp.size(); i ++)
{
cout<<dp[i]<<",";
}
cout<<endl;
}
};