这是 python中dataframe常见操作:取行、列、切片、统计特征值的延续
这篇博客中涉及的内容主要是:根据dataframe中的值进行筛选赋值;修改索引;查看datafram的信息,删除某一列,判断是否含有缺失值,以及缺失值所在行的删除。
//先生成一个样例数据-本文所演示代码均基于python3.6,在jupyter中所敲写
import numpy as np
import pandas as pd
data = DataFrame(np.arange(16).reshape(4,4),index = list("ABCD"),columns=list('wxyz'))
data
结果为:
//将w这一列小于5的赋值为0,大于5的赋值为1.
data.loc[data['w']<5,['w']]=0
data.loc[data['w']>5,['w']]=1
data
结果为:
//将列名修改为x1,x2,x3,x4
data.columns = ['x1','x2','x3','x4']
data
结果为:
//删除x3这一列
data.drop(['x3'], axis=1, inplace=True)
data
结果为:
//将其中一个数据设置为缺失值NAN
data.loc['A','x2'] = NAN
data
结果为:
//查看dataframe的信息
data.info()
结果为:
从中可以看到数据有4行,3列,x2这一列有缺失值。
//查看dataframe是否有缺失的另一种方法
data.isnull().any() #判断是否有缺失
结果为:
//删除dataframe中有缺失值的数据行
data.dropna(axis=0,how='any',inplace=True)
data
结果为: