python中dataframe常见操作(二):筛选,修改索引,判断是否为空,及删除NAN所在行

这是 python中dataframe常见操作:取行、列、切片、统计特征值的延续

这篇博客中涉及的内容主要是:根据dataframe中的值进行筛选赋值;修改索引;查看datafram的信息,删除某一列,判断是否含有缺失值,以及缺失值所在行的删除。

//先生成一个样例数据-本文所演示代码均基于python3.6,在jupyter中所敲写
import numpy as np
import pandas as pd
data = DataFrame(np.arange(16).reshape(4,4),index = list("ABCD"),columns=list('wxyz'))
data

结果为:
在这里插入图片描述

//将w这一列小于5的赋值为0,大于5的赋值为1.
data.loc[data['w']<5,['w']]=0
data.loc[data['w']>5,['w']]=1
data

结果为:
在这里插入图片描述

//将列名修改为x1,x2,x3,x4
data.columns = ['x1','x2','x3','x4']
data

结果为:
在这里插入图片描述

//删除x3这一列
data.drop(['x3'], axis=1, inplace=True)
data

结果为:
在这里插入图片描述

//将其中一个数据设置为缺失值NAN
data.loc['A','x2'] = NAN
data

结果为:
在这里插入图片描述

//查看dataframe的信息
data.info()

结果为:
从中可以看到数据又多少行,多少列,那些列有缺失
从中可以看到数据有4行,3列,x2这一列有缺失值。

//查看dataframe是否有缺失的另一种方法
data.isnull().any()   #判断是否有缺失

结果为:
在这里插入图片描述

//删除dataframe中有缺失值的数据行
data.dropna(axis=0,how='any',inplace=True)
data

结果为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值