KM算法模板 hdu2255

/*
二分图最优匹配算法,邻接矩阵形式
复杂度o(m^3)
HDU 2255

当前默认权值最大匹配
*/

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<queue>
#include<ctype.h>
#include<bitset>
#include<map>
# pragma comment (linker,"/STACK:16777216")

using namespace std;

const int MAXN = 305;
const int INF  = 2100000000;
const double esp = 1e-9;

int n;
int mat[MAXN][MAXN];//图
int link[MAXN], slack[MAXN], lx[MAXN], ly[MAXN];
//link记录最有匹配中x节点对应的y节点
//slack松弛量数组
//lx, ly分别是x集合和y集合中点的顶标
bool visx[MAXN], visy[MAXN];
//标记点是否访问


//在相等子图中查找一条增广路径
bool find(int x)
{
    visx[x] = 1;

    for(int i = 1; i <= n; i++)
    {
        int temp = lx[x] + ly[i] - mat[x][i];

        if(visy[i]) continue;

        //只有满足相等子图时才能进行增广
        if(temp == 0)
        {
            visy[i] = 1;
            if(link[i] == 0 || find(link[i]))
            {
                link[i] = x;

                return 1;
            }

        }
        //非相等子图,更新松弛量数组
        else slack[i] = min(temp, slack[i]);
    }

    return 0;
}

void km(int n)
{

    memset(link, 0, sizeof(link));
    memset(ly, 0, sizeof(ly));
    memset(lx, 0, sizeof(lx));

    for(int i = 1; i <= n; i++)
    for(int j = 1; j <= n; j++)
    lx[i] = max(lx[i], mat[i][j]);//初始化顶标

    /*
    如果查找最小权匹配,改成这样
    for(int i = 1; i <= n; i++)
    {
        lx[i] = -INF;
        for(int j = 1; j <= m; j++)
        lx[i] = max(lx[i], mat[i][j]);
    }
    */


    for(int i = 1; i <= n; i++)
    {
        memset(slack, 127, sizeof(slack));
        while(1)
        {
            memset(visx, 0, sizeof(visx));
            memset(visy, 0, sizeof(visy));

            if(find(i)) break;//找到相等子图的一个增广匹配,退出

            int d = INF;
            for(int j = 1; j <= n; j++)
            if(!visy[j]) d = min(d, slack[j]);//找不到相等子图的增广匹配,选取最小的顶标与边权差修改顶标

            for(int j = 1; j <= n; j++)//在交错树中的x,顶标值减去d
            if(visx[j]) lx[j] -= d;

            for(int j = 1; j <= n; j++)//在交错树中的y,顶标值加上d
            if(visy[j]) ly[j] += d;
            else slack[j] -= d;//不在交错树中的y,由于对应的x顶标减少d,slack值也减少d
        }
    }

}

int main()
{
    //freopen("C:/Users/zts/Desktop/in.txt", "r", stdin);
    while(cin >> n)
    {
        memset(mat, 0, sizeof(mat));

        for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
        cin >> mat[i][j];

        km(n);

        int ans = 0;
        for(int i = 1; i <= n; i++)
        {
            if(link[i] != 0)
            ans += mat[link[i]][i];
        }

        cout << ans << endl;
    }

    return 0;
}

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值