老规矩,先上代码,后面有解题思路。
//
// Created by tannzh on 2020/6/12.
//
/*
* 最长回文子串
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。
示例 2:
输入: "cbbd"
输出: "bb"
通过次数291,057提交次数947,907
*/
#include <iostream>
#include <string>
using namespace std;
class Solution {
public:
string longestPalindrome(string s) {
int len = s.size();
if (len == 0) return s;
int start = 0, last = 0;
for (int i=0; i<len-1; ++i) {
longestPalindrome(s, i, i, start, last);
longestPalindrome(s, i, i+1, start, last);
}
return s.substr(start, last-start+1);
}
private:
void longestPalindrome(const string& s, int b, int e, int &start, int &last) {
int len = s.size();
while (b >= 0 && e < len && s[b] == s[e])
--b, ++e;
++b, --e;
if (e - b > last - start) {
start = b;
last = e;
}
}
};
int main(int argc, char **argv)
{
Solution s;
std::string test1 = "babad";
std::string test2 = "cbbd";
std::cout << "test1 result: " << s.longestPalindrome(test1) << std::endl;
std::cout << "test2 result: " << s.longestPalindrome(test2) << std::endl;
return 0;
}
解题思路
假设 S(i, j) 为问题的解,即从位置 `i` 到 `j` 的字符串是 Longest Palindromic Substring of the string.
我们从最简单的字符串来想:
a
单字符本身是否是回文?是。即 S(i, i)
a a
两个相同字符是否组成回文?是。即 S(i, i+1) when `s[i] == s[i+1]`.
b a a b
为上面的回文字符串首尾增加一个相同的字符 `b`, 组成了回文,即 S(i, j) when S(i+1, j-1) and `s[i] == s[j]`.
由于我们持续在首尾增加字符,对于单字符,则长度一直为奇数;对于双字符,则长度一直为偶数。所以要涵盖所有情况,需要分别验证这两种情况。
好了,分析到这里基本可以明白回文的规律所在了。
要求的是长度,那么我们记 Longest Palindromic Substring 为 longest.