记一次22亿大数据分析处理踩坑实践 1. hive脚本相关操作2. mysql数据插入,批量插入脚本的使用,及其中我遇到的一些坑.3. 脚本处理数据的一些操作(遍历目录下的每一个文件, 遍历文件的每一行,获取每一行中的每一列,记录shell线程,执行时间,函数传参和返回值)4. 理解做事情的思路是多么的重要.5. 这是一次xxx的经历.
Java Object你真的了解了吗 在平时的coding中hashCode()和equals()的使用的场景有哪些?clone深复制怎么实现?wait()和notify()有什么作用?finalize()方法干嘛的?看似coding中使用的不多,不重要,但是有没有跟我一样,想好好的了解一下的。毕竟是基础中的基础。
cheat安装使用 ## 安装1.sudo apt-get install python 如果已经安装了python则不用安装.2.sudo apt-get install python-pip3. sudo pip install docopt pygments4. sudo pip install cheatOK, 安装完毕.cheat -v查看版本吧另外也可以在github上clone下来, 用python s
删除Ubuntu分区后恢复 由于一次手误,在Windows中把Ubuntu的系统分区和swap分区删除了,导致不能进系统。开机直接error no such partition和grub rescue mode。下面讲述一下系统恢复过程!
web.xml入门讲解 要点元素都放在<web-app></web-app>之中大小写敏感、元素顺序敏感web.xml中不仅对大小写敏感,而且对元素出现的顺序也敏感,顺序如图:Servlet的访问路径名称和<servlet>标签和<servlet-mapping>的名称必须是相同原理1、启动一个WEB项目的时候,WEB容器会去读取它的配置文件web.xml,读取<listener>和<context-param>两个结点。
比比Java和C#语言运行的快慢 前言:闲来无事,在图书馆随便看看书,发现不论是在论坛还是写书的作者都喜欢将Java和C#拿来比较一番。谈论语言的是非。所以我决定,从语言的运行快慢来比较一下究竟哪种语言快些。
基于auto_ptr源码的智能指针实现 智能指针某些情况下能够避免内存泄露,这里我做了一次重复制造轮子,目的是为了深入理解智能指针的实现原理。这里只实现了auto_point,根据原理我们不难推出其他智能指针的实现方式。
【算法】Fibonacci解法总结 我这里说的Fibonacci数列不仅仅是f(n-1) + f(n-2)的情况,也可以是f(n-1) + f(n-2) + … + f(n-k)的情况。但是这里我们用f(n-1) + f(n-2)来进行讨论,简化理解,举一反三。解法一,递归实现非常简单。int fibonacci(int i){ if(i==0){ return 0; }else if(i==1){
【动态规划】最小硬币面值组合 问题给出硬币种类,及要组合的sum,求用最少的硬币数目到达sum。 如:硬币种类1,5,8 sum为20,则最少的硬币数目为5555。解析动态规划解法: dp[i]表示用N种硬币组合成i大小的最少硬币数目。 状态转移方程: dp[i] = min{dp[i-arr[j]] + 1 | 0<=j<=arr_len && arr[j]<=i , dp[i]}. dp[0] = 0;实现mems
【动态规划】硬币面值组合(上台阶) 问题1分2分5分的硬币三种,组合成1角,共有多少种组合?有1分,2分,5分,10分四种硬币,每种硬币数量无限,给定n分钱,有多少中组合可以组成n分钱?一个人上台阶可以一次上1个,2个,或者3个,问这个人上n层的台阶,总共有几种走法? 问法不一样,但是本质一样!解析实现总结
【动态规划】交错重排 问题两个字符串,不改变原顺序,能否组成目标字符串。 eg: str1:ABC str2:123 aim:A12BC3、123ABC、1A2B3C、………解法动态规划解: dp[i][j]表示str1[0…i-1]和str2[0…j-1]能否组成aim[0…i+j-1]长度的字符串. 状态转移方程: dp[0][j] = str2[0…j] == aim[0…j] ? 1:0 dp[i
【动态规划】求二维数组走法路径种数 问题给定二维数组,从左上走到右下的走法种树,数组中1代表该格可以走,0代表不能走。且只能向下和向右走。解法典型的动态规划问题:dp[i][j]表示从[0][0]到[i][j]的走法数量。状态转移方程:dp[0][j] = 1 where i = 0dp[i][0] = 1 where j = 0dp[i][j] = dp[i-1][j] + dp[i][j-1] where arr[i]