博士毕业后悔回老家,抑郁了。。。

最近一网友发文称:博士毕业觉得自己年龄有点大,回老家的一个地级市当大学老师,结果发现落差有点大,每天处于后悔的痛苦中,已经抑郁了。

实际上只要没有都尝试过,干啥都会后悔,即便踏入社会干几年估计也会后悔。我觉得在大学当老师也挺好,大学老师又不像高中那样有早读和晚读,有些科目的老师甚至连作业都不用留,上完课就走,一周也没几节课,假期还贼多。

cb8b6e89d0367183627bbf0b369a60e8.png

de17bf4b62331a65a4d191dd408084c6.png

--------------下面是今天的算法题--------------

来看下今天的算法题,这题是LeetCode的第1278题:分割回文串 III。

问题描述

来源:LeetCode第1278题

难度:困难

给你一个由小写字母组成的字符串 s,和一个整数 k。请你按下面的要求分割字符串:

1,首先,你可以将 s 中的部分字符修改为其他的小写英文字母。

2,接着,你需要把 s 分割成 k 个非空且不相交的子串,并且每个子串都是回文串。

请返回以这种方式分割字符串所需修改的最少字符数。

示例1:

输入:s = "abc", k = 2

输出:1

解释:你可以把字符串分割成 "ab" 和 "c",并修改 "ab" 中的 1 个字符,将它变成回文串。

示例2:

输入:s = "aabbc", k = 3

输出:0

解释:你可以把字符串分割成 "aa"、"bb" 和 "c",它们都是回文串。

  • 1 <= k <= s.length <= 100

  • s 中只含有小写英文字母。

问题分析

分割回文串在leetcode上总共有 4 道题,今天这个是第 3 题,除了第一道是中等,其他 3 道都是困难,关于前面两道我们可以看下《分割回文串》《分割回文串 II》

这题让计算的是把字符串分割成 k 个子串,并且每个子串都是回文的,问需要修改最少字符数。

我们可以先预处理子串 s[i,j] 变成回文串需要修改的字符数:

1,如果 s[i]==s[j],子串 s[i,j] 变成回文串需要修改的字符数就是 s[i+1,j-1] 变成回文串所需要修改的字符数。

2,如果 s[i]!=s[j],子串 s[i,j] 变成回文串需要修改的字符数就是 s[i+1,j-1] 变成回文串所需要修改的字符数 + 1 。

预处理完之后再来进行分割,这里使用的是动态规划的思想,定义 dp[i][j] 表示把前 i 个字符分割成 j 个子串所需要修改的字符数可以得到:dp[i][j]=dp[m][j-1]+change(s,m,i-1),这里我们需要枚举 m 的值,但要注意 m 必须大于等于 j-1 。

7b9d7176ef04b9c8f7f82d0555da49ff.png

这题要求返回的是最少字符修改数,所以我们只需要记录最小的即可。

JAVA:

public int palindromePartition(String s, int k) {
    int length = s.length();
    // palindrome[i][j]表示子串[i,j]转化为回文串所需要的修改的字符数
    int[][] palindrome = new int[length][length];
    // 一列一列的从左往右(只遍历右上部分)
    for (int j = 1; j < length; j++)
        for (int i = 0; i < j; i++)
            palindrome[i][j] = palindrome[i + 1][j - 1] + (s.charAt(i) == s.charAt(j) ? 0 : 1);

    // dp[i][j]表示s的前i个字符分割成k个回文子串的最少次,第一行都是 0 。
    int[][] dp = new int[length + 1][k + 1];
    for (int i = 1; i < dp.length; i++) {
        Arrays.fill(dp[i], Integer.MAX_VALUE);
    }

    // 前i个字符,分割成j个回文子串
    for (int i = 1; i <= length; i++) {
        // i 个字符最多只能分割成 i 个子串,取 i 和 k 的最小值。
        int len = Math.min(i, k);
        for (int j = 1; j <= len; j++) {
            if (j == 1) {
                // 相当于没有分割,字符串的下标是从0开始的,所以这里要减 1
                dp[i][j] = palindrome[j - 1][i - 1];
            } else {
                // 开始尝试分割,从 j-1 个字符开始分割(保证任何子串都至少有一个字符)
                for (int m = j - 1; m < i; m++)
                    dp[i][j] = Math.min(dp[i][j], dp[m][j - 1] + palindrome[m][i - 1]);
            }
        }
    }
    return dp[length][k];
}

C++:

public:
    int palindromePartition(string s, int k) {
        int length = s.length();
        // palindrome[i][j]表示子串[i,j]转化为回文串所需要的修改的字符数
        vector<vector<int>> palindrome(length, vector<int>(length, 0));
        // 一列一列的从左往右(只遍历右上部分)
        for (int j = 1; j < length; j++)
            for (int i = 0; i < j; i++)
                palindrome[i][j] = palindrome[i + 1][j - 1] + (s[i] == s[j] ? 0 : 1);

        // dp[i][j]表示s的前i个字符分割成k个回文子串的最少次,第一行都是 0 。
        vector<vector<int>> dp(length + 1, vector<int>(k + 1, INT_MAX));
        fill(dp[0].begin(), dp[0].end(), 0);

        // 前i个字符,分割成j个回文子串
        for (int i = 1; i <= length; i++) {
            // i 个字符最多只能分割成 i 个子串,取 i 和 k 的最小值。
            int len = min(i, k);
            for (int j = 1; j <= len; j++) {
                if (j == 1) {
                    // 相当于没有分割,字符串的下标是从0开始的,所以这里要减 1
                    dp[i][j] = palindrome[j - 1][i - 1];
                } else {
                    // 开始尝试分割,从 j-1 个字符开始分割(保证任何子串都至少有一个字符)
                    for (int m = j - 1; m < i; m++)
                        dp[i][j] = min(dp[i][j], dp[m][j - 1] + palindrome[m][i - 1]);
                }
            }
        }
        return dp[length][k];
    }

Python:

def palindromePartition(self, s: str, k: int) -> int:
    length = len(s)
    # palindrome[i][j]表示子串[i,j]转化为回文串所需要的修改的字符数
    palindrome = [[0] * length for _ in range(length)]
    #  一列一列的从左往右(只遍历右上部分)
    for j in range(1, length):
        for i in range(j):
            palindrome[i][j] = palindrome[i + 1][j - 1] + (0 if s[i] == s[j] else 1)

    #  dp[i][j]表示s的前i个字符分割成k个回文子串的最少次,第一行都是 0 。

    dp = [[float('inf')] * (k + 1) for _ in range(length + 1)]
    dp[0] = [0] * (k + 1)

    #  前i个字符,分割成j个回文子串
    for i in range(1, length + 1):
        #  i 个字符最多只能分割成 i 个子串,取 i 和 k 的最小值。
        minlen = min(i, k)
        for j in range(1, minlen + 1):
            if j == 1:
                #  相当于没有分割,字符串的下标是从0开始的,所以这里要减 1
                dp[i][j] = palindrome[j - 1][i - 1]
            else:
                #  开始尝试分割,从 j-1 个字符开始分割(保证任何子串都至少有一个字符)
                for m in range(j - 1, i):
                    dp[i][j] = min(dp[i][j], dp[m][j - 1] + palindrome[m][i - 1])
    return dp[length][k]

来自:数据结构与算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值