7-3 矩阵A乘以B (15分)
给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘。即若A有Ra行、Ca列,B有Rb行、Cb列,则Ca与Rb相等时,两个矩阵才能相乘。
输入格式:
输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。
输出格式:
若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出Error: Ca != Rb,其中Ca是A的列数,Rb是B的行数。
输入样例1:
2 3
1 2 3
4 5 6
3 4
7 8 9 0
-1 -2 -3 -4
5 6 7 8
输出样例1:
2 4
20 22 24 16
53 58 63 28
输入样例2:
3 2
38 26
43 -5
0 17
3 2
-11 57
99 68
81 72
输出样例2
Error: 2 != 3
这一题就是需要搞清楚如何控制行和列的变化,矩阵相乘时,A是行不变,用i控制,B是列不变,用j控制,再定义一个变量k来控制同时进行变化的A的列和B的行,即写作: a[i][k] * b[k][j]
代码如下:
#include<iostream>
using namespace std;
int main(){
int Ca,Ra,Cb,Rb;
cin >> Ca >> Ra;
int a[Ca][Ra];
for(int i = 0;i < Ca;i ++){
for(int j = 0;j < Ra;j ++){
cin >> a[i][j];
}
}
cin >> Cb >> Rb;
int b[Cb][Rb];
for(int i = 0;i < Cb;i ++){
for(int j = 0;j < Rb;j ++){
cin >> b[i][j];
}
}
if(Ra != Cb){
cout << "Error: " << Ra << " != " << Cb;
return 0;
}else{
cout << Ca << " " << Rb << endl;
for(int i = 0;i < Ca;i ++){
for(int j = 0;j < Rb;j ++){
int sum = 0;
for(int k = 0;k < Ra;k ++){
sum += a[i][k] * b[k][j];//计算操作
}
if(j < Rb-1){
cout << sum << " ";
}
else{
cout << sum << endl;
}
}
}
}
}