VIT中PatchEmbed、MultiHeadAttention代码详解(PyTorch)

本文对PatchEmbed和MulitHeadAttention进行代码的详细解读,希望可以给同样被此处困扰的小伙伴提供一些帮助,如有错误,还望指正。

一、VIT简单介绍

相信看到本文的小伙伴基本都是了解了VIT为何物,否则也不会对PatchEmbed感兴趣,所以本文只对VIT做一个简单的介绍。
VIT是Vision Transformer的简称,是将Transformer模型运用在图片上的一个重要的网络模型,也是Transformer四大核心模块之一。
其思想就是将图片分块再拼接形成如同文本数据一般的序列数据,方便将数据输入到Transformer网络中。如图为VIT的网络模型结构,本文不会讨论其所有的子模块,而是选择器PatchEmbed模块和MultiHeadAttention模块进行代码的详解。
在这里插入图片描述

二、PatchEmbed

1.PatchEmbed的目的

将输入的图片用分块再拼接的思想转化为序列的形式,因为Transformer只能接收序列数据。注意这里只是用了分块再拼接的思想,看代码的时候,不需要这个思想也是可以看懂的,如果理解不了,就直接看代码就可以了。或者说看懂了代码之后就理解这个思想了。

2.代码的执行过程

1.输入的图片size为[B, 3, 224, 224]
2.确定好分块的大小为patch_size=16,确定好16,就可以确定卷积核的大小为16,步长为16,即patch_size = kernel_size = stride
3.首先图片通过卷积nn.Conv2d(3, 768,(16,16), (16,16))后size变为[B, 768, 14, 14]
4.再经历一次flatten(2),变为[B, 768, 14*14=196],这里flatten(2)的2意思是在位序为2开始进行展平
5.最后经过一次转置transpose(1, 2),size变成[B, 196, 768]

3.注意

许多人还是不理解为什么要将图片的size转成[B, 196, 768],因为Transformer接受的是序列格式的数据,而不是图片4维【B,C,H,W】的格式,序列如文本数据的格式为【B,N,C】,N为token的个数,C为每个token的维度。只有将图片通过分块拼接成序列形式,才可以输入到transformer网络中。

4.完整代码解释

class PatchEmbed(nn.Module):
    def __init__(self, img_size=224,  # 输入图片大小
			    patch_size=16,  # 分块大小
			    in_c=3,  # 输入图片的通道数
			    embed_dim=768,  # 经过PatchEmbed后的分块的通道数
			    norm_layer=None): # 标准化层
        super(PatchEmbed, self).__init__()
        img_size = (img_size, img_size)  #将img_size、patch_size转为元组
        patch_size = (patch_size, patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        # // 是一种特殊除号,作用为向下取整
        # grid_size:分块后的网格大小,即一张图片切分为块后形成的网格结构,理解不了不用理解,就是为了求出分块数目的
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]  # 分块数量
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)  # 分块用的卷积
        # 如果norm_layer为None,就使用一个空占位层,就是看要不要进行一个标准化
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
        # nn.Identity()层是用来占位的,没什么用

    def forward(self, x):
        B, C, H, W = x.shape
        # assert是python的断言,当后面跟的是False时就会停下
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})"
        """
        x = self.proj(x).flatten(2).transpose(1, 2)
        1.第一步将x做卷积 [B, 3, 224, 224] -> [B, 768, 14, 14]
        2.从位序为2的维度开始将x展平 [B, 768, 14, 14] -> [B, 768, 196]
        3.转置[B, 196, 768] 得到batch批次,每个批次有196个“词”,每个“词”有768维
        """
        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x

5.代码简化版

上述代码可以简化为如下代码,不同之处在于使用了Rearrange函数
Rearrange函数可以很方便的操作张量的shape,直接替代了view和reshape方法
Rearrange函数的简单使用如下:

from einops import rearrange

img = torch.randn(1, 3, 224, 224)
print(img.shape)
patch = rearrange(img, 'b c (h s1) (w s2) -> b (h w) (s1 s2 c)', s1=16, s2=16)
"""
解释:
img [1, 3, 224, 224]
【b c (h s1) (w s2)】其中s1=s2=16,故可知h=w=224/16=14
故【b (h w) (s1 s2 c)】=[b 196 768]
"""
print(patch.shape)

简化版的PatchEmbed如下:

class PatchEmbed(nn.Module):
    def __init__(self, patch_size=16, in_channel=3, emb_size=768):
        super(PatchEmbed, self).__init__()
        self.patch_embed_linear = nn.Sequential(
            # 将原始图片切分为16*16并将其拉平
            Rearrange('b c (h s1) (w s2) -> b (h w) (s1 s2 c)', s1=patch_size, s2=patch_size),
            nn.Linear(patch_size * patch_size * in_channel, emb_size)
        )

    def forward(self, x):
        x = self.patch_embed_linear(x)
        return x

除此之外,使用卷积操作也是可以的:

class PatchEmbedding(nn.Module):
    def __init__(self, in_channel=3, embed_dim=768, patch_size=16):
        super(PatchEmbedding, self).__init__()
        self.patch_embed_conv = nn.Sequential(
            # [b, 3, 224, 224]
            nn.Conv2d(in_channel, embed_dim, kernel_size=patch_size, stride=patch_size),
            # [b, 768, 14, 14]
            Rearrange('b c h w -> b (h w) c')
            # [b, 196, 768]
        )

    def forward(self, x):
        x = self.patch_embed_conv(x)
        return x

三、Attention机制

1.self-attention和MultiHeadAttention的区别

自注意力机制和多头注意力机制原理上几乎差不多,而二者的不同之处在于自注意机制是用一组QKV来使token获取上下文信息。
而由下图可知,多头注意力机制是使用多组QKV来让token得到多组的上下文信息,最后使用一个W0矩阵对得到的所有Zi进行整合。
在这里插入图片描述

2.部分代码解释

在下面的完整代码中,有如下一行代码,刚好找到了图解,所以单独拿出来,以便于理解。

self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)

上面的代码可以用下图来理解,通过一次的全连接操作,就可以生成x的QKV矩阵
在这里插入图片描述
通过上图的解释,不难得出,该行代码可以用如下三行代码来替换:

self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)

对于代码中的参数qk_scale,记住这是公式中的根号dk就可以了。在这里插入图片描述

3.实现思想

代码在实现多头注意力机制的时候,使用了一次计算多组的方法,即多头所用的qkv,一次性生成,各组间的计算也是一次性通过矩阵计算的方式并行计算完成。

# 一次性生成
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
# 一次性计算
attn = (q @ k.transpose(-2, -1)) * self.scale  # 计算相似度
x = (attn @ v).transpose(1, 2).reshape(B, N, C)  # 计算注意力值

在这两行代码中,q、k、v代表的就是多组的qkv矩阵,通过一个矩阵计算的算式即可将每一组的qkv都计算出来。

4.完整代码解释

class Attention(nn.Module):
    # 在实现上多头注意实际上就是在单头的基础上增添num_heads个维度,且在最后输出attention时增加一个权重矩阵
    def __init__(self,
                 dim,  # 输入token的dim 768
                 num_heads=8,
                 qkv_bias=False,  # 在生成qkv时是否使用偏置
                 qk_scale=None,  # q、k的缩放因子,保证内积计算不会受到向量长度的影响
                 attn_drop_ratio=0,
                 proj_drop_ratio=0):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        head_dim = dim // self.num_heads  # 计算每一个head需要传入的dim  768/8=96
        self.scale = qk_scale or head_dim ** -0.5  # 若给定qk_scale则使用其作为缩放因子,若没给则使用后者
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        """
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        目的:得到对应x的q、k、v矩阵,其中x是token_num个dim维的token组成的矩阵
        过程:x:[token_num, dim] 经过Linear层后得到矩阵 qkv[token_num, dim * 3]
             将qkv矩阵按dim进行拆分,就可以得到size为[token_num, dim]的q、k、v三个矩阵
        故该线性层可以拆分为:
        self.q = nn.Linear(dim, dim)
        self.k = nn.Linear(dim, dim)
        self.v = nn.Linear(dim, dim)
        新的理解:经过一个线性层,就是让输入矩阵乘一个[in_channel, out_channel]的矩阵
        如:x[token_num, dim] 经过 Linear(dim, dim*3) 就是乘一个[dim, dim*3]的矩阵,最后变成[token_num, dim*3]
        """
        self.attn_drop = nn.Dropout(attn_drop_ratio)
        self.proj = nn.Linear(dim, dim)  # 将每一个head的结果拼接的时候所乘的权重
        self.proj_drop = nn.Dropout(proj_drop_ratio)

    def forward(self, x): # x是经历了PatchEmbed后的x
        B, N, C = x.shape # 【B,N,C】:【B, 196, 768】 
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        """
        输入x:[batch, N, C]
            1.self.qkv(x) : qkv:[B, N, 3*C]
            2.reshape() : qkv:[B, N, 3, self.num_heads, C // self.num_heads]
            3.permute(2, 0, 3, 1, 4) : qkv:[3, B, self.num_heads, N, C // self.num_heads]
        size说明:
            3:将qkv分为q、k、v三个矩阵 | q:[B, self.num_heads, N, C(dim)]
            B: 每个q/k/v矩阵都对应有B个batch | 单个q : [self.num_heads, N, C(dim)]
            self.num_heads : 在根据头数,将q/k/v划分为对应头数个矩阵 | 每个头:[N, C(dim)]:  
            反正就是将qkv划分为和输入x一致大小的矩阵
        """
        q, k, v = qkv[0], qkv[1], qkv[2]  # 【B,8,N,96】:【batch,8个头,N个词,每个词96维】
        attn = (q @ k.transpose(-2, -1)) * self.scale  # 计算相似度
        """
        q、k、v都是【B, 8, N, 96】的矩阵,就是多头注意力机制的多个qkv
        然后利用attn = (q @ k.transpose(-2, -1)) * self.scale公式让这多组q@k一次性计算出来
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)也是一样的,通过一个公式将多组的	 softmax(q@k)@v计算出来
        """
        attn = attn.softmax(dim=-1)  # 计算概率
        attn = self.attn_drop(attn)
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)  # 计算注意力值
        x = self.proj(x)  # 乘最后的权重矩阵
        x = self.proj_drop(x)
        return x
  • 12
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是使用PyTorch实现Vision TransformerVIT)模型的示例代码: ```python import torch import torch.nn as nn import torch.nn.functional as F class ViT(nn.Module): def __init__(self, img_size, patch_size, emb_size, num_heads, num_layers, num_classes): super(ViT, self).__init__() self.patch_size = patch_size self.num_patches = (img_size // patch_size) ** 2 self.proj = nn.Conv2d(3, emb_size, kernel_size=patch_size, stride=patch_size) self.cls_token = nn.Parameter(torch.randn(1, 1, emb_size)) self.pos_emb = nn.Parameter(torch.randn(1, self.num_patches + 1, emb_size)) self.blocks = nn.ModuleList([TransformerBlock(emb_size, num_heads) for _ in range(num_layers)]) self.mlp_head = nn.Sequential( nn.LayerNorm(emb_size), nn.Linear(emb_size, num_classes) ) def forward(self, x): x = self.proj(x) x = x.flatten(2).transpose(1, 2) cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_emb[:, :(self.num_patches + 1)] for block in self.blocks: x = block(x) x = x.mean(dim=1) x = self.mlp_head(x) return x class TransformerBlock(nn.Module): def __init__(self, emb_size, num_heads, mlp_ratio=4.0): super(TransformerBlock, self).__init__() self.attention = nn.MultiheadAttention(emb_size, num_heads) self.mlp = nn.Sequential( nn.Linear(emb_size, int(emb_size * mlp_ratio)), nn.GELU(), nn.Linear(int(emb_size * mlp_ratio), emb_size), nn.Dropout(0.1) ) self.norm1 = nn.LayerNorm(emb_size) self.norm2 = nn.LayerNorm(emb_size) def forward(self, x): residual = x x = self.norm1(x) x = x.permute(1, 0, 2) x, _ = self.attention(x, x, x) x = x.permute(1, 0, 2) x += residual residual = x x = self.norm2(x) x = self.mlp(x) x += residual return x ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值