最长回文子串以及 Manacher 算法

正如孔乙己知道“回”字有四种写法
这个问题也有四种解决的方法

  1. 暴力法
    枚举这个字符串的所有子串,再判断是否为回文。时间复杂度为 O(n^3)
    此处不实现,太弱智了

  2. 中心扩展法
    从字符串的每一个字符开始,以此为中心,向两侧扩展,直到不是回文为止。
    这种方法的时间复杂度是 O(n^2)。但是要考虑到许多特殊情况。如 bb,abbbb,bbbb 等偶数个的回文,所以逻辑上比较复杂。使用这种方法打败了接近 50% 的 python 提交。

    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """
        r = ''
        for i in range(0, len(s)):
            temp = s[i]
            j = i - 1
            k = i + 1

            while j >= 0 and k < len(s) and s[j] == s[k]:
                temp = s[j] + temp + s[k]
                j -= 1
                k += 1
			
			# 识别如 abba 这种的回文
            if k < len(s) and k == i + 1 and s[k] == s[i]:
                temp += s[k]
                j = i - 1
                k += 1
                while j >= 0 and k < len(s) and s[j] == s[k]:
                    temp = s[j] + temp + s[k]
                    j -= 1
                    k += 1
			
			# 识别如 aabbbbaa 这种回文
            if 1 < k < len(s) and s[k] == s[i] and temp.count(s[i]) == len(temp):
                temp += s[k]
                k += 1
                while j >= 0 and k < len(s) and s[j] == s[k]:
                    temp = s[j] + temp + s[k]
                    j -= 1
                    k += 1

            if len(temp) > len(r):
                r = temp

        return r
  1. 动态规划法
    假设 dp[i, j] = 1 表示 s[i…j] 为回文,则有 dp[i, j] = 1 —> dp[i+1, j-1] = 1
    所以得到状态转移方程
    d p [ i , j ] = { d p [ i + 1 , j − 1 ] , s[i] = s[j] 0 , s [ i ] ! = s [ j ] dp[i, j] = \begin{cases} dp[i+1, j-1], &amp; \text {s[i] = s[j]} \\ 0, &amp;\text{$s[i] != s[j] $} \end{cases} dp[i,j]={dp[i+1,j1],0,s[i] = s[j]s[i]!=s[j]
    dp 数组的初始化
    dp[i,i] = 1
    dp[i,i+1] = 1 if s[i] == s[i+1]
   def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """

        if not s or len(s) == 1:
            return s

        dp = [[False for j in range(len(s))] for i in range(len(s))]
        longest = 1
        start = 0

        # 初始化 dp
        for i in range(0, len(s)):
            dp[i][i] = True
            if i + 1 < len(s) and s[i] == s[i+1]:
                dp[i][i+1] = True
                start = i
                longest = 2


        for l in range(3, len(s) + 1):
            # 枚举子串长度

            for i in range(0, len(s) - l + 1):
                # 枚举子串的起始点

                j = l + i - 1
                if s[i] == s[j] and dp[i+1][j-1]:
                    dp[i][j] = True
                    start = i
                    longest = l

        return s[start: start + longest]
  1. Manacher 算法
    该算法的介绍在 https://www.cnblogs.com/grandyang/p/4475985.html
    以下是其用 python 的实现( faster than 93.25% of Python online submissions )
    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """

        if not s or len(s) == 1:
            return s

        t = '$#' + '#'.join(s) + '#'
        p = [0] * len(t)  # p[i] 表示以 t[i] 为中心的回文的最大半径
        mx = 0
        id = 0
        resLen = 0  # 记录全局最大的半径
        resCenter = 0

        for i in range(1, len(t)):
            p[i] = min(p[2 * id - i], mx - i) if mx > i else 1

            while i + p[i] < len(t) and i - p[i] >= 0 and t[i + p[i]] == t[i - p[i]]:
                p[i] += 1

            if mx < i + p[i] - 1:
                mx = i + p[i] - 1
                id = i

            if resLen < p[i]:
                resLen = p[i]
                resCenter = i

        return s[(resCenter - resLen) // 2: (resCenter - resLen) // 2 + resLen - 1]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值