【最长回文子串】Manacher算法详解

写在前面

manacher算法解决最长回文子串以及变形问题的时间复杂度为O(n)。

如果你想囫囵吞枣,只需要使用到该算法,你可以直接把代码拿走;但如果你想深入了解这个算法的工作原理和关键部分解读,还是希望你能静下心来,拿出一张纸,一根笔,来好好揣摩算法背后的魅力,算法解读部分内容来自《来自于程序员代码面试指南:IT名企算法与数据结构题目最优解》,理解起来的确有点冗杂和费力。(以下来自网友真实案例)

Python代码(Leetcode 5为例)

class Solution:
    def manacherString(self,s):
        charArr = list(s)
        res = []
        index = 0
        for i in range(0, len(charArr) * 2 + 1):
            if (i & 1) == 0:
                res.append("#")
            else:
                res.append(charArr[index])
                index += 1
        return res
   
    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """
        # if s is None or len(s) == 0:
        #     return None
        charArr = self.manacherString(s)
        pArr = []
        index = -1
        pR = -1
        max_value =  -11111
        # maxContainsEnd = -1
        for i in range(0,len(charArr)):
            if pR > i:
                pArr.append(min(pArr[2*index -i],pR-i))
            else:
                pArr.append(1)

            while i + pArr[i] < len(charArr) and i - pArr[i] > -1:
                if charArr[i + pArr[i]] == charArr[i - pArr[i]]:
                    pArr[i] += 1
                else:
                    break

            if i + pArr[i] > pR:
                pR = i + pArr[i]
                index = i
            max_value = max(max_value, pArr[i])
   
        result1 = pArr.index(max_value)
        result2 = charArr[result1-max_value+1:result1+ max_value]
        for i in range(0,len(result2),2):
            result2.remove('#')
        result2 = ''.join(result2)
        return result2
    

#leetcode Test 最快的答案
class Solution:
    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """
        if len(s) < 2 or s == s[::-1]:
            return s
        
        max_len = 1
        start = 0
        for i in range(1,len(s)):
            even = s[i - max_len : i + 1]
            odd = s[i - max_len - 1 : i + 1]
            if i - max_len - 1 >= 0 and odd == odd[::-1]:
                start = i - max_len - 1
                max_len += 2
                continue
            if i - max_len >= 0 and even == even[::-1]:
                start = i - max_len
                max_len +=  1
        return s[start : start + max_len]

Manacher算法详解

该算法是由Glenn Manacher于1975年首次发明的,Manacher算法解决的我呢提是在线性时间内找到一个字符串的最长回文子串,比起能够解决该问题的其他算法,Manacher算法算比较好理解和实现的。

数据处理与“扩”

以一般的思维,从左到右遍历字符串,遍历到每个字符的时候,都要看以这个字符作为中心能够产生多大的回文字符串。如str="abacaba",最长回文子串是以str[3]='c'为中心时,最大长度的7,以str[0]='a'为中心,回文子串长度为1,以str[1]='b'为中心,回文子串长度为3。这种是有中心的,但是如str=“abba”,最长回文子串长度为4,但中心并不在某个元素上,而是一个“虚轴”,在两个'b'之间。这是就出现第一个问题,当最长回文长度是偶数时,我们无法找到这个回文,因为它没有确切的中心。同时这种方法存在第二个问题,之前遍历过的字符完全无法指导后面遍历的过程,也就是对每个字符来说都是从自己的位置出发,往左右两个方向扩出去检查。这样,对每个字符来说,往外扩对的代价都是一个级别的。举一个极端的例子“aaaaaaaaaaaaaa”,对每一个'a'来讲,都是扩到边界才停止。所以每一个字符扩出去检查的代价都是O(n),所以总的时间复杂度O(n²)。Manacher算法可以做到O(n)的时间复杂度,精髓是之前字符的“扩”过程,可以指导后面字符的“扩”过程,使得每次的“扩”过程不都是从无开始。以下是Manacher算法解决原问题的过程:

1.数据处理

因为奇回文和偶回文在判断时比较麻烦,所以对str进行处理,把每个字符开头、结尾和中间插入一个特殊字符’#‘来得到一个新的字符串数组。比如str=”bcbaa“,处理后为"#b#c#b#a#a#",对于元素为偶数个的字符串同样处理,也可以得到奇数个的字符串,(原理:以下图为例,奇+偶=奇),经过数据处理,得到的字符串都是奇数位的,解决了字符串长度差异问题,同时‘#’的加入并不影响原始数据的回文序列

然后从每个字符左右扩出去的方式找最大回文子串就方便多了。对于奇回文来说,不这么处理也能通过扩的方式找到,比如"bcb",从'c'开始向左右两侧扩出去能找到最大回文。处理后为"#b#c#b#",从'c'开始向左右两侧扩出去依然能找到最大回文。对偶回文来说,不处理而直接通过扩的形式是找不到的,比如"aa",因为没有确定的中心,但是处理后'#a#a#',就可以通过从中间的‘#’扩出去的方式找到最大回文。所以通过这样的处理方式,最大回文子串无论是偶回文还是奇回文,都可以通过统一的“扩”过程找到,解决了差异性的问题。同时要说的是,这个特殊字符是什么无所谓,甚至可以是字符串中出现的字符,不会影响最终的结果,就是一个纯辅助的作用。

2.辅助变量

假设str处理之的字符串记为charArr。对每个字符(包括特殊字符)都进行“优化后”的扩过程。解释以下三个辅助变量的意义:

数组p。长度与charArr长度一样。p[i]的意义是以i位置上的字符(charArr[i])作为回文中心的情况下,扩出去得到的最大回文半径是多少,设只有自身时的回文半径为1,举个例子说明,对"#c#a#b#a#c#"来说,p[0...10]为[1,2,1,2,1,6,1,2,1,2,1]。整个过程就是在从左到右遍历的过程中,依次计算每个位置的最大回文半径值。

i012345678910
charArr[i]#c#a#b#a#c#
p[i]12121612121

整数pR。这个变量的意义是之前遍历的所有字符的所有回文半径中,最右即将到达的位置(将到未到的位置,以上面charArr[1]='c'为例,pR为3)。还是以"#c#a#b#a#c#"为例,还没有遍历之前,pR初始设置为-1,charArr[0]='#'的回文半径为1,所以目前回文半径向右只能扩到位置0,回文半径最右即将到达的位置变成了1(pR=1)。charArr[1]='#'的回文半径为2,此时所有的回文半径向右能扩到位置2,所以回文半径最右即将到达的位置变为3(pR=3)。charArr[2]== '#'的回文半径为1,所以位置2向右只能扩到位置2,回文半径最右即将到达的位置不变,仍是3(pR=3)。chaArr[3]='a'的回文半径为2,所以位置3向右能扩到位置4,所以回文半径最右即将到达的位置变为5(pR=5)。charArr[4]='#'的回文半径为1,所以位置4向右只能扩到位置4,回文半径最右即将到达的位置不变仍是5(pR=5)。 charArr[5]= 'b'的回文半径为6,所以位置4向右能扩到位置10,回文半径最右即将到达的位置变为11(pR=11)。 此时已经到达整个字符数组的结尾,所以之后的过程中pR将不再变化。换句话说,pR 就是遍历过的所有字符中向右扩出来的最大右边界。只要右边界更往右,pR就更新。

整数index。这个变量表示最近一次pR更新时,那个回文中心的位置。以刚刚的例子来说,遍历到charArr[0]时pR更新,index就更新为0.遍历到charArr[1]时pR更新,index就更新为1,......,遍历到charArr[5]时pR更新,index就更新为5。之后的过程中,pR将不再更新,所以index将一直是5。

3.“扩”

只要能够从左到右依次算出数组p每个位置的值,最大的那个值实际上就是处理后的charArr中最大的回文半径,根据更大的回文半径,再对应回原字符串的话,整个问题就解决了。第三步就是从左到右依次计算出p数组每个位置的值的过程。

1)假设现在计算到位置i的字符charArr[i],在i之前位置的计算过程中,都会不断地更新pR和index的值,即位置i之前的index这个回文中心扩出了一个目前最右的回文边界pR;

2)如果pR-1位置没有包住当前i位置。比如"#c#a#b#a#c#",计算到charArr[0]='#'时,pR为1。也就是说,右边界在1位置,1位置为最右回文半径即将到达但还没有到达的位置,所以当前的pR-1位置没有包住当前i位置。此时和普通做法一样,从i位置字符开始,向左右两侧扩出去检查,此时的“扩”过程没有获得“加速”("加速"的含义第3)点中会详细讲解);

3)如果pR-1位置包住了当前的i位置。比如“#c#a#b#a#c#”,计算到charArr[6...10]时,pR都是11,此时pR-1包住了位置6~10.这种情况下,检查过程是可以获得优化的(即加速),这也是manacher算法的核心内容。

在上图中,位置i是要计算回文半径(p[i])的位置 。pR-1位置此时是包住位置i的。同时根据index的定义,index是pR更新时那个回文中心的位置,所以如果pR-1位置以index为中心对称,即pR',那么从pR'位置到pR-1位置一定是以index为中心的回文串,既然回文半径数组p是从左到右计算的,所以位置i之前的所有位置都已经算过回文半径。假设位置i以index为中心向左对称过去的位置为i',那么i'的回文半径也是计算过的。那么以i'为中心的最大回文串大小(p[i'])必然只有三种情况,我们依次分析以下。

情况一:i'R'和i'R完全在pR'和pR内部(i'R'和i'R分别是以i'为中心时最大回文串的左边界和右边界)。即以i'为中心的最大回文串完全在以index为中心的最大回文串的内部,如下图所示。

令a'是i'R'位置的前一个字符,b'是i'R位置的后一个字符,b是b'以index为中心的对称字符,a是a'以index为中心的对称字符。iR是i'R'以index为中心的对称位置,iR'是i'R以index为中心的对称位置。如果处在情况一下,那么以位置i为中心的最大回文串可以直接确定,那么就是iR'到iR这一段。原因是,首先,i'R'到i'R这一段如果以index为回文中心,对应过去就是iR'到iR这一段,那么iR'到iR这一段完全是i'R'到i'R这一段的逆序。同时有i'R'到i'R这一段是回文串(以i'为回文中心),所以iR'到iR这一段一定也是回文串,也就是说,以位置i为中心的最大回文串起码是iR'到iR这一段。另外,以位置i'为中心的最大回文串只是i'R'到i'R这一段,说明a'!=b',那么必然有a!=b,说明以位置i为中心的最大回文串就是iR’到iR这一段,而不会扩的更大。(p[i']表示以i'为中心的最长回文半径,利用其可以加快后面的查找,这就是“加速”)

情况二:i'R在pR'和pR的内部,而i'R'在pR'的左侧,即外部,如下图所示。

令a'是pR'位置的前一个字符,b'是i'pR'位置的后一个字符,b是b'以index为中心的对称字符,c是a'以index为中心的对称字符。iR是i'R'以index为中心的对称位置,iR'是i'R以index为中心的对称位置,i'pR'是pR'以i'为中心的对称位置,ipR是pR以i为中心的对称位置。如果处在情况二下,那么以位置i为中心的最大回文串可以直接确定,就是ipR到pR这一段。原因是,首先,pR'到i'pR'这一段和ipR到pR这一段是关于index对称的,所以ipR到pR这一段是pR'到i'pR'这一段的逆序。同时,i'R'到i'R这一段是回文串(以i'为中心),那么pR'到i'pR'这一段也是回文串,所以pR'到i'pR'这一段的逆序也是回文串,所以ipR到pR这一段一定是回文串。也就是说,以位置i为中心的最大回文串起码是ipR到pR这一段。另外,i'R'到i'R这一段是回文串,说明a'=b',b'和b关于index对称,说明b==c,pR'到pR这一段没有扩更大,说明a'!=c,所以b!=c。说明以位置i为中心的最大回文串就是ipR到pR这一段,而不会扩的更大。

情况三:i'R'和pR'在同一位置,即以i'为中心的最大回文串压在了以index为中心的最大回文串的边界上,如下图所示。

i'R'和pR'的位置重叠,iR'是i'R位置以index为中心的对称位置,ipR是pR

位置以i为中心的对称位置,可以很容易的证明iR'和ipR位置也重叠。如果处在情况三下,那么以位置i为中心的最大回文串起码是ipR到pR这一段,但可能会扩的更大。因为ipR到pR这一段是i'R'和i'R这一段以index为中心对称过去的,所以两段互为逆序关系,同时i'R'到i'R这一段又是回文串,所以ipR到pR这一段一i的那个是回文串,但以位置i为中心的最大回文串是可能扩的更大的,pR的下一个元素是未知的,有可能ipR的前一个元素一样的,此时会发生扩更大的情况。以位置i为中心的最大回文串起码是ipR到pR这一段,但可以扩更大。说明在情况三下,扩出去的过程可以得到优化,但还是无法避免扩出去的检查。

结果处理与复杂度证明

1.结果处理

按照上面的操作从左到右计算出p数组,计算完成后再遍历一遍p数组,找出最大的回文半径,假设位置i的回文半径最大,即p[i]==max。但max只是charArr数组的最大回文半径,还得对应回原来的字符串,求出最大回文半径的长度(其实就是max-1)。比如原字符串为“121”,处理成charArr之后为“#1#2#1#”。在charArr中位置3的回文半径最大,最大值为4(即p[3]=4),对应原字符串的最大回文子串长度为4-1=3。

2.算法时间复杂度为O(n)的证明

虽然我们可以很明显地看到Manacher算法与普通方法相比,在扩出去检查这一行为上有明显的优化,但如何证明该算法地时间复杂度就是O(n)呢?关键之处在于估算扩出去检查这一行为发生的数量。原字符串在处理后地长度由n变成了2n,从算法地主要逻辑来看,要么在计算一个位置地回文半径时完全不需要扩出去检查,比如,算法步骤中介绍的三种情况,都可以直接获得位置i的回文半径长度;要么每一扩出去检查都会导致pR变量的更新,比如上面步骤中的情况2和情况3,扩出去检查时都让回文半径到达更右的位置,当然会使pR更新。然而pR最多是从-1增加到2n(右边界),并且从来不减小,所以扩出去检查的次数就是O(n)的级别。所以Manacher算法时间复杂度是O(n)。

进阶问题

在字符串的最后添加最少字符,使得整个字符串都成为回文串,其实就是查找在必须包含最后一个字符的情况下,最长的回文子串是什么。那么之前不是最长回文子串的部分逆序过来,就是应该添加的部分。比如“abcd123321”,在必须包含最后一个字符的情况下,最长的回文子串是“123321”,之前不是最长回文子串的部分是“abcd”,所以末尾应该添加的部分就是“dcba”,那么只要把manacher算法稍作修改就可以。具体改成:从左到右计算回文半径时,关注回文半径最右即将到达的位置(pR),一旦发现已经到达最后(pR==charArr.length),说明必须包含最后一个字符的最长回文半径已经找到,直接退出检查过程,返回该添加的字符串即可。

 

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZoomToday

给作者倒一杯卡布奇诺

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值