1. In-Memory KV Store : Redis
in memory key-value store,同时提供了更加丰富的数据结构和运算的能力,成功用法是替代memcached,通过checkpoint和commit log提供了快速的宕机恢复,同时支持replication提供读可扩展和高可用。
2. Disk-Based KV Store: Leveldb
真正基于磁盘的key-value storage, 模型单一简单,数据量不受限于内存大小,数据落盘高可靠,Google的几位大神出品的精品,LSM模型天然写优化,顺序写盘的方式对于新硬件ssd再适合不过了,不足是仅提供了一个库,需要自己封装server端。
3. Document Store: Mongodb
分布式nosql,具备了区别mysql的最大亮点:可扩展性。mongodb 最新引人的莫过于提供了sql接口,是目前nosql里最像mysql的,只是没有ACID的特性,发展很快,支持了索引等特性,上手容易,对于数据量远超内存限制的场景来说,还需要慎重。
4. Column Table Store: HBase
这个富二代似乎不用赘述了,最大的优势是开源,对于普通的scan和基于行的get等基本查询,性能完全不是问题,只是只提供裸的api,易用性上是短板,可扩展性方面是最强的,其次坐上了Hadoop的快车,社区发展很快,各种基于其上的开源产品不少,来解决诸如join、聚集运算等复杂查询。
1、HBase依赖于HDFS;MongoDB直接存储在本地磁盘中
2、HBase按照列族将数据存储在不同的文件中;MongoDB不分列,整个文档都存储在一个(或者说一组)文件中,通过一个有一个通用的.ns文件保存名称空间(Column-based和Document-Based之间的区别应该是指这个地方吧)
3、HBase一个region只有一个HRegionServer对外提供服务(没有负载均衡的概念);MongoDB的shards(类似于region)支持负载均衡(主从结构,通过日志进行同步,这个HBase也在开发计划当中)
4、HBase根据文件的大小来控制region的分裂;MongoDB根据负载来决定shards的分裂
Hbase的优点:
1 列的可以动态增加,并且列为空就不存储数据,节省存储空间.
2 Hbase自动切分数据,使得数据存储自动具有水平scalability.
3 Hbase可以提供高并发读写操作的支持
Hbase的缺点:(感觉两个缺点都很致命,第一个应该可以通过自身去改进,从底层的方式去添加,第二个缺点....1 master N slave。。。我自己也不太懂 感觉挺bug的)
1 不能支持条件查询,只支持按照Row key来查询.
2 暂时不能支持Master server的故障切换,当Master宕机后,整个存储系统就会挂掉.