一、技术栈
操作系统:CentOS、Alma、Rocky、Ubuntu、openEuler、openKylin、TencentOS、OpenCloudOS
开发语言:Java、Python、Scala
后台框架:Servlet、Spring、MyBatis、SpringMVC、SpringBoot、SpringCloud
前端框架:HTML、CSS、JavaScript、JQuery、Bootstrap、Echarts、Vue、Element
爬虫框架:BS4、lxml、Scrapy
数据分析:Numpy、Pandas、Matplotlib、Seaborn、pyecharts、scipy、sklearn
文件存储:HDFS、FastDFS、Ceph、MinIO、GlusterFS、Swift
关系型数据库:MySQL、PostgreSQL、Oracle、SQL Server
NOSQL数据库:HBase、Redis、MongoDB、ElasticSearch、Neo4J、IOTDB
离线计算:MapReduce、Spark 、Flink、Tez
实时计算:Spark Streaming、Flink、Samza、Storm
计算中间件:Celeborn、Linkis、Livy
查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、FlinkSQL、Kudu、 Kylin、Druid、ClickHouse 、Greenplum、Doris
数据仓库:Teradata、Cube、GaussDB(DWS)(华为)、ArgoDB(星环科技)、GBase(南大通用)、AnalyticDB(阿里云)
数据湖:Hudi、Iceberg、Delta、Paimon
数据治理:Falcon、Atlas、Ranger、Sentry
资源管理:YARN、Mesos、Torca、Kubernetes
分布式协调服务:Zookeeper、Eureka、Nacos、Consul、
集群管理与监控:Ambari、Ganglia、Zabbix、Hue、Nagios、DataSophon、Cloudera Manager、Eagle、SkyWalking
日志收集:Flume、Logstash、Fluentd、Datax、Maxwell
数据同步:SeaTunnel 、DataX、Sqoop、Flume、Flink CDC
任务调度:Azkaban、Airflow、Oozie、DolphinScheduler
消息系统:Kafka、RabbitMQ、ActiveMQ、RocketMQ 、StormMQ、ZeroMQ、InLong、 Pulsar
数据挖掘:Mahout、Spark MLLib、Deeplearning4j、Singa
可视化:Tableau、Kibana、Superset、Grafana、Plotly、Metabase、FineBI、PowerBI
云原生:Docker、 Kubernetes
云平台:(Amazon S3、GCP、Microsoft Azure、阿里云、腾讯云、华为云、百度云)
开发工具:Maven、Gradle、SVN、Git
建模工具:EnterpriseArchitect、PowerDesigner、ERwin
以上是自己觉得比较全的,后续会不断扩充!!!
二、岗位分析
1、大数据开发工程师
岗位群集发展路线
技术路线
- 初(中)级大数据开发工程师:专注于基础技术的学习与应用,如熟练掌握 Hadoop、Spark 等大数据框架的基础操作,熟悉数据采集、清洗、存储等基本流程,能够按照既定的方案完成数据处理任务。
- 高级大数据开发工程师:深入研究大数据技术,能够优化数据处理流程和算法,解决复杂的技术难题,如对大规模数据进行高效的分布式计算和存储优化,提升数据处理的性能和效率 。
- 大数据架构师:负责设计和规划大数据系统的整体架构,包括数据存储架构、计算架构、数据集成架构等,需要对各种大数据技术和工具进行整合和选型,以满足企业大规模数据处理和分析的需求。
- 首席技术官(CTO):站在企业技术战略的高度,引领公司的技术发展方向,制定大数据技术战略规划,推动技术创新和变革,为企业的数字化转型提供核心技术支持。
业务路线
- 数据产品开发工程师:将大数据技术与产品开发相结合,负责开发数据驱动的产品和服务,如基于用户行为数据的个性化推荐系统、数据可视化产品等,通过数据产品为企业创造商业价值146.
- 数据运营专家:深入了解业务运营需求,通过数据分析和挖掘为运营决策提供支持,如制定精准的营销策略、优化用户体验等,提升业务运营的效率和效果.
- 行业解决方案专家:专注于特定行业的大数据应用解决方案,如金融、医疗、电商等,深入了解行业特点和业务需求,为行业客户提供定制化的大数据解决方案,推动行业的数字化转型和创新发展.
管理路线
- 技术团队负责人:负责领导和管理大数据开发团队,制定团队的工作计划和目标,分配项目任务,指导团队成员提升技术能力,推动团队的整体发展和项目的顺利实施.
- 数据部门经理:全面负责企业数据部门的管理工作,包括团队建设、资源协调、项目管理、预算控制等,制定数据部门的发展战略和规划,推动数据在企业内的广泛应用和价值提升.
- 首席数据官(CDO):作为企业数据战略的核心人物,负责制定企业的数据战略和政策,统筹管理企业的数据资产,推动数据文化在企业内部的建设,促进数据在企业各部门之间的共享和协作,为企业的决策提供数据支持和依据。
2、大数据运维工程师
技术路线
- 初(中)级大数据运维工程师:需掌握 Linux 基础操作、大数据组件的基本部署与配置,熟悉常见的运维工具,如 Zabbix 等,能够进行日常的监控、告警及简单的故障处理123.
- 高级大数据运维工程师:深入研究大数据技术,精通 Hadoop、Spark 等组件的优化与调优,可处理复杂的性能问题和架构缺陷,保障大数据平台的高效稳定运行,同时具备一定的自动化运维能力.
- 大数据运维架构师:负责设计和规划大数据运维架构,整合多种技术和工具,构建高可用、可扩展的大数据运维体系,对新技术保持敏锐洞察力,推动运维架构的持续优化16.
- 首席技术官(CTO):引领公司的技术发展方向,从宏观层面制定大数据技术战略和规划,推动数据技术在企业内的全面应用和创新,为企业数字化转型提供核心技术支撑6.
业务路线
- 数据运维工程师:将运维工作与数据管理相结合,负责数据的备份、恢复、迁移等工作,保障数据的安全性和完整性,同时关注数据质量,参与数据治理工作,为企业的数据应用提供稳定可靠的数据基础13.
- 大数据运营与优化专家:深入了解业务需求,通过对大数据平台的运维和监控,为业务运营提供数据支持和优化建议,如根据业务负载调整资源配置、优化数据处理流程等,提升业务运营效率和效果。
- 行业解决方案架构师:专注于特定行业的大数据运维解决方案,结合行业特点和业务需求,设计和实施定制化的大数据运维方案,推动行业的数字化转型和创新发展.
管理路线
- 大数据运维团队负责人:领导和管理大数据运维团队,制定工作计划和目标,分配任务,指导团队成员提升技术能力,推动团队的整体发展和项目的顺利实施.
- 数据中心经理:全面负责企业数据中心的管理工作,包括资源协调、预算控制、人员管理等,保障数据中心的稳定运行和高效服务,为企业的业务发展提供有力支持.
- 首席数据官(CDO):负责企业数据战略的制定和执行,统筹管理企业的数据资产,推动数据文化在企业内部的建设,促进数据在各部门之间的共享和协作,为企业的决策提供数据支持和依据.
3、数据仓库工程师
技术路线
- 初级数据仓库工程师:需掌握数据仓库的基本概念、原理和架构,熟悉 SQL 语言,能够使用 ETL 工具进行简单的数据抽取、转换和加载工作,具备一定的数据分析和报表开发能力.
- 高级数据仓库工程师:深入理解数据建模理论和方法,熟练运用 Hadoop、Spark 等大数据处理技术,能够设计和优化复杂的数据仓库模型,解决数据处理和存储中的性能问题,提升数据仓库的整体性能和可扩展性.
- 数据仓库架构师:负责规划和设计企业级数据仓库架构,整合多种数据来源和技术,构建高效、稳定、安全的数据仓库系统,引领技术团队进行数据仓库的建设和优化,推动数据仓库技术在企业内的应用和创新.
- 首席技术官:从企业战略层面制定数据技术发展方向,引领数据仓库技术与大数据、人工智能、云计算等前沿技术的融合,推动企业数字化转型,通过技术创新为企业创造竞争优势.
业务路线
- 数据分析师:基于数据仓库中的数据,运用数据分析方法和工具,为企业提供深入的业务洞察和决策支持,如市场趋势分析、用户行为分析、销售预测等,帮助企业优化业务流程、提高运营效率和制定战略决策.
- 数据产品经理:负责数据产品的规划、设计和开发,将数据仓库中的数据转化为有价值的数据产品和服务,满足企业内部和外部客户的需求,推动数据在产品中的创新应用,提升数据的商业价值.
- 商业智能专家:专注于企业商业智能的建设和应用,通过数据仓库整合企业内外部数据,运用数据挖掘、报表工具等技术,为企业管理层提供全面、准确、及时的商业智能报表和分析,支持企业的战略规划和决策制定.
管理路线
- 数据仓库团队负责人:领导和管理数据仓库团队,制定团队的工作计划和目标,分配项目任务,指导团队成员提升技术水平和工作能力,推动团队的整体发展和项目的顺利实施,同时与其他部门协调合作,确保数据仓库能够满足企业的业务需求.
- 数据部门经理:全面负责企业数据部门的管理工作,包括数据仓库、数据分析、数据治理等多个领域,制定数据战略和规划,统筹管理企业的数据资产,协调跨部门的数据合作,推动数据文化在企业内部的建设,为企业的数字化转型提供有力支持.
其他方向
- 独立顾问:凭借丰富的经验和专业知识,为不同企业提供数据仓库相关的咨询服务,包括数据仓库规划、设计、实施、优化等方面的建议和指导,帮助企业解决数据仓库建设和管理中的问题.
- 教育与培训:可以在高校、职业培训机构或在线教育平台担任讲师,教授数据仓库相关的课程,分享自己的实践经验和技术知识,培养数据仓库领域的专业人才2.
- 行业研究与创新:参与数据仓库领域的行业研究和创新项目,与科研机构、企业合作,共同探索数据仓库技术的新应用和发展趋势,推动数据仓库技术的不断进步2.
4、ETL工程师
技术路线
- 初级 ETL 工程师:熟练掌握数据抽取、清洗、转换和加载的基本操作,熟悉 SQL 语言及常用的 ETL 工具,如 Kettle、Sqoop 等,能够按照既定流程完成简单的数据处理任务12.
- 高级 ETL 工程师:深入理解数据仓库架构和数据建模方法,如星型模型、雪花模型等,熟练运用 Hadoop、Spark 等大数据处理框架,优化 ETL 流程,提升数据处理效率和质量,解决复杂的数据集成和转换问题14.
- ETL 架构师:负责企业级数据架构的设计和规划,引领 ETL 技术方向,整合多种数据来源和技术,构建高效、稳定、可扩展的数据处理平台,推动数据架构的优化和升级,为企业的数据分析和决策提供有力支持1.
- 首席技术官:从企业战略层面制定数据技术发展规划,关注大数据、人工智能、云计算等前沿技术的融合与创新,引领技术团队进行数据架构的变革和升级,推动企业的数字化转型1.
业务路线
- 数据分析师:基于 ETL 处理后的数据,运用数据分析方法和工具,如 Excel、Python 等,进行数据探索和分析,为企业提供业务洞察和决策支持,如市场趋势分析、用户行为分析等.
- 数据产品经理:负责数据产品的规划、设计和开发,将 ETL 处理后的数据转化为有价值的数据产品和服务,满足企业内部和外部客户的需求,推动数据在产品中的创新应用,提升数据的商业价值.
- 商业智能专家:专注于企业商业智能的建设和应用,通过 ETL 整合企业内外部数据,运用数据挖掘、报表工具等技术,为企业管理层提供全面、准确、及时的商业智能报表和分析,支持企业的战略规划和决策制定.
管理路线
- ETL 团队负责人:领导和管理 ETL 团队,制定团队的工作计划和目标,分配项目任务,指导团队成员提升技术水平和工作能力,推动团队的整体发展和项目的顺利实施,同时与其他部门协调合作,确保 ETL 工作能够满足企业的业务需求.
- 数据部门经理:全面负责企业数据部门的管理工作,包括 ETL、数据分析、数据治理等多个领域,制定数据战略和规划,统筹管理企业的数据资产,协调跨部门的数据合作,推动数据文化在企业内部的建设,为企业的数字化转型提供有力支持.
其他方向
- 数据咨询师:凭借丰富的 ETL 经验和专业知识,为不同企业提供数据处理和架构方面的咨询服务,包括 ETL 流程优化、数据仓库规划、数据治理策略等方面的建议和指导,帮助企业解决数据管理中的问题.
- 教育培训:可以在高校、职业培训机构或在线教育平台担任讲师,教授 ETL 相关的课程,分享自己的实践经验和技术知识,培养数据领域的专业人才.
- 行业研究与创新:参与数据处理领域的行业研究和创新项目,与科研机构、企业合作,共同探索 ETL 技术的新应用和发展趋势,推动数据处理技术的不断进步.
5、数据分析师
技术路线
- 初(中)级数据分析师:掌握基础数据分析技能,如熟练使用 Excel、SQL、Python 等工具,熟悉基本统计分析方法,能进行简单的数据收集、清洗、分析和可视化工作.
- 高级数据分析师:深入掌握数据挖掘、机器学习等技术,可处理复杂数据问题,能运用高级分析方法和算法,如聚类分析、决策树等,为企业提供深度洞察和决策支持.
- 数据科学家:具备深厚的数学、统计学和计算机科学基础,能构建和优化复杂的预测模型和机器学习算法,解决前沿的数据分析问题,推动企业在数据驱动下的创新和发展.
业务路线
- 数据运营:基于数据分析结果,制定和执行数据驱动的运营策略,提升业务指标,如用户活跃度、留存率等,通过数据监测和分析不断优化运营效果.
- 商业智能分析师:将数据分析与商业决策紧密结合,为企业提供战略层面的数据分析支持,如市场趋势分析、竞争对手分析等,帮助企业制定长期发展战略.
- 数据产品经理:负责数据产品的规划、设计、开发和推广,将数据分析的成果转化为实际的产品和服务,满足企业内部和外部客户的需求,推动数据在产品中的创新应用.
管理路线
- 数据分析团队 leader(总监):负责领导和管理数据分析团队,制定团队的发展战略和工作计划,分配项目任务,指导团队成员提升专业技能,推动团队整体绩效的提升
- 数据部门负责人:从宏观层面规划和管理企业的数据资产,制定数据战略和政策,协调跨部门的数据合作,推动数据文化在企业内部的建设,为企业的数字化转型提供全面的支持.
其他方向
- 数据隐私与安全专家:随着数据安全和隐私保护的重要性日益凸显,数据分析师可凭借对数据的了解,转型从事数据隐私保护、数据安全策略制定等工作56.
- 教育与培训:将自身的专业知识和实践经验传授给他人,成为数据分析师的培训师或高校相关专业的教师,培养更多的数据人才137.
- 咨询顾问:为企业提供专业的数据分析咨询服务,帮助企业解决数据管理、数据分析策略等方面的问题,指导企业进行数字化转型36.
6、BI工程师
技术路线
- 初级 BI 工程师:负责数据收集、清洗、存储,以及简单可视化和报表制作,需掌握 SQL 语言、ETL 工具等基本技能.
- 中级 BI 工程师:要具备较强数据分析能力,能设计数据集市和宽表,进行复杂分析和报表开发,需掌握统计分析软件、可视化工具等.
- 高级 BI 工程师:通常会成为数据仓库架构师或数据挖掘工程师,负责系统与数据库编程设计,要有 5 年以上从业经验,掌握多种编程语言.
- 数据科学家: 具备深厚的数学、统计学和计算机科学基础,能构建和优化复杂的预测模型和机器学习算法,解决前沿的数据分析问题 。
- 大数据架构师:负责企业大数据架构的设计和规划,引领大数据技术方向,整合多种数据来源和技术,构建高效、稳定、可扩展的数据处理平台。
业务路线
- 数据分析师:基于 BI 处理后的数据,进行深入分析,为企业提供业务洞察和决策支持,如市场趋势、用户行为分析等.
- 数据产品经理:负责数据产品的规划、设计和开发,将数据分析成果转化为产品和服务,满足内外部客户需求,推动数据在产品中的应用.
- 商业智能专家:专注于企业商业智能建设和应用,通过 BI 整合数据,运用数据挖掘等技术,为管理层提供商业智能报表和分析,支持战略规划和决策制定.
管理路线
- BI 团队负责人:领导和管理 BI 团队,制定工作计划和目标,分配项目任务,指导成员提升技能,推动团队绩效提升,协调跨部门合作.
- 数据部门经理:全面负责数据部门管理工作,包括 BI、数据分析、数据治理等领域,制定数据战略和规划,统筹管理数据资产,推动数据文化建设.
其他方向
- 咨询顾问:为企业提供专业的数据分析咨询服务,帮助解决数据管理、分析策略等问题,指导数字化转型.
- 教育培训:在高校、培训机构或在线教育平台担任讲师,教授 BI 相关课程,分享实践经验和技术知识,培养数据人才.
- 行业研究与创新:参与数据处理领域的行业研究和创新项目,与科研机构、企业合作,探索 BI 技术新应用和发展趋势,推动技术进步
7、爬虫工程师
技术深化路线
- 初级爬虫工程师:需掌握 Python 基础语法,熟悉 requests 等网络请求库,以及 lxml、BeautifulSoup 等解析库,能够运用 MySQL、MongoDB 等数据库存储数据,具备编写简单爬虫程序,实现基本数据采集的能力.
- 中级爬虫工程师:要进一步掌握 Ajax 技术,能够通过 Ajax 接口获取数据,熟悉多线程、多进程、协程等编程技术,提升数据采集效率,同时掌握 Fiddler、mitmproxy 等抓包工具,用于分析网络请求和响应.
- 高级爬虫工程师:需深入研究分布式爬虫技术,如 Scrapy-Cluster 等框架,能够搭建和优化大规模分布式爬虫系统,以应对海量数据采集任务,还需掌握验证码破解、IP 代理池等技术,以应对复杂的反爬虫机制.
- 专家级爬虫工程师:要深入研究爬虫框架的底层原理,对分布式系统架构、网络通信协议、数据加密算法等有深入理解,能够针对高难度的网站进行数据采集,如金融数据、政府数据等。
数据分析与数据科学路线
- 数据分析师:凭借在数据采集和预处理方面的经验,爬虫工程师可以转型为数据分析师,通过对采集到的数据进行深入分析,为企业提供决策支持.
- 数据科学家:进一步学习机器学习、深度学习等算法,将数据采集与数据分析、挖掘技术相结合,构建数据模型,进行预测分析和数据驱动的决策.
全栈开发与架构师路线
- 全栈工程师:拓展知识面,学习前端开发技术,如 HTML、CSS、JavaScript 等,以及后端开发框架,如 Django、Flask 等,能够独立完成 Web 应用的全流程开发16.
- 系统架构师:负责设计和规划大型系统的架构,包括数据架构、应用架构、技术架构等,从宏观层面把控系统的性能、可扩展性和稳定性.
产品与管理路线
- 产品经理:基于对数据的深入理解和市场需求的洞察,参与数据产品的规划、设计和管理工作,推动数据产品的创新和发展.
- 技术经理:负责管理和领导技术团队,制定技术发展战略,推动技术创新和团队协作,确保项目的顺利实施和交付.
安全与合规路线
- 网络安全工程师:由于爬虫技术涉及到网络请求和数据采集,与网络安全密切相关,因此爬虫工程师可以转型为网络安全工程师,专注于网络安全防护、漏洞检测和修复等工作.
- 数据合规专家:随着数据法规的日益严格,企业对数据合规性的要求越来越高,爬虫工程师可以凭借对数据采集和使用的了解,转型为数据合规专家,负责确保企业的数据采集和使用符合法律法规的要求.
8、JavaWeb开发工程师
技术进阶路线
- 初级工程师:熟练掌握 Java 基础,包括语法、面向对象编程等,熟悉常用开发工具与版本控制系统,掌握前端基础及至少一种 Java Web 框架,通过项目实践积累经验124.
- 中级工程师:深入理解 Java 核心技术及性能调优等,掌握常见设计模式和多种 Web 开发框架,能够独立承担复杂项目开发,在特定业务领域深入钻研124.
- 高级工程师:精通 Java 高级开发技术和前沿技术,如微服务架构等,能够解决复杂技术难题,主导大型项目的架构设计与开发,成为技术专家124.
架构师路线
积累丰富开发经验后,可转型为系统架构师,负责设计大型系统架构,需掌握面向服务架构等知识,具备深厚技术功底和全局视野,引领技术方向146.
管理路线
- 项目管理:具备一定技术和项目经验后,可担任项目经理,负责项目计划、组织等,提升沟通等软技能.
- 部门管理 / 技术总监:进一步发展可成为部门经理或技术总监,负责技术团队建设和管理,制定技术战略和规划.
全栈开发路线
学习前端开发技术等,转型为全栈工程师,能够独立完成 Web 应用全流程开发,更好地理解系统架构和运行机制,提供更优质的产品和服务6.
业务专家路线
在项目开发中深入了解特定业务领域,将技术与业务融合,成为既懂技术又懂业务的复合型人才,为企业业务发展提供专业的技术解决方案16.
创业 / 咨询路线
积累足够经验和人脉后,可选择创业成立技术公司,或成为技术顾问,为其他企业提供技术咨询和解决方案
9、其它
大数据讲师、大数据产品经理、大数据售前工程师、大数据主管、大数据测试工程师、大数据助理