易我数据恢复!易我恢复数据软件的操作步骤

我们在使用U盘的时候也经常会遇到一些奇奇怪怪的问题,其中,大众反应最多的问题就是:U盘数据丢失!小编就遇到了好多次U盘数据丢失的情况,除了不知道怎么丢失的,有时候也会因为一些误操作把上面的一些数据给删除了。想必任何人遇到文件丢失的情况都会很着急,毕竟能够存入U盘的文件都是很重要的!那么易我恢复数据软件是什么?下面就来看看易我恢复数据软件操作步骤

工具/原料

系统版本:windows10系统

品牌型号:联想小新air15

软件版本:易我恢复数据软件

方法/步骤

一、易我恢复数据介绍

EaseUS Data Recovery Wizard,中文名为易我数据恢复向导,是由软件开发商EaseUS推出的一款专业数据恢复软件,在全球深受超过 72,000,000 用户的信任,具有误删除恢复、完全恢复和分区恢复三大主要的数据恢复功能,能非常有效的恢复删除或丢失的文件、恢复格式化的分区以及恢复分区异常导致丢失的文件。不小心删除了文档?不小心格式化储存设备导致资料丢失?没有比硬盘格式变成 RAW 还惨的事?这些问题统统都别担心,易我数据恢复软件可以帮助大家解决这一系列问题,具有删除恢复、格式化恢复、高级恢复等非常强大的功能,可以针对不同情况的数据丢失来进行数据恢复。软件操作简单,只需要几个步骤就可恢复所需要的数据,EaseUS Data Recovery Wizard可以全面恢复删除丢失数据,能对电脑误删文件恢复、格式化硬盘数据恢复、手机U盘数据恢复等、RAID磁盘阵列数据恢复、分区丢失以及其他未知原因丢失的数据恢复,简单易用轻松搞定数据恢复。

二、易我恢复数据的详细步骤

1. 连接u盘和计算机,打开易我数据恢复软件

在计算机上插入数据遗失的u盘,然后运行u盘数据恢复软件—易我数据恢复。

在外置设备下找到U盘,点击「扫描」查找丢失的资料。

 2. 快速扫描和高级扫描U盘

易我数据恢复大师对U盘执行彻底扫描,帮您找到丢失的资料。

 3. 恢复移动盘上丢失的数据

扫描结束后,可以查看和预览在U盘里查找到的资料。

在「删除文件」下面找到删除的资料/文件/数据。

如果您格式化了U盘,可以在「丢失文件」选项下查找文件。

「筛选」功能帮您快速找到特定类型文件(象是视频、图片、文件、音频或电子邮件等等。

直接双击文件进行预览。

最后,勾选需要的资料,执行「恢复」,将还原回来的资料保存在其他外接式储存设备上。

总结

以上就是易我恢复数据软件的详细操作啦,如果你需要数据恢复软件就可以试试这个哟。

<think>好的,我现在需要回答用户关于PyTorch是否支持同时安装CPUGPU版本的问题。首先,我应该回顾一下PyTorch的安装机制。根据用户提供的引用资料,安装GPU版本的PyTorch通常需要特定的CUDA版本,并且用户可能需要通过不同的渠道获取对应的whl文件,比如从官网或镜像源下载[^2][^3][^5]。 接下来,我需要理解CPUGPU版本的区别。CPU版本是运行在处理器上的,而GPU版本需要NVIDIA的CUDA支持,利用显卡加速计算。两者在安装包上有不同的依赖项库文件,例如GPU版本会包含CUDA相关的库,而CPU版本则没有这些。 然后,我考虑是否可以在同一个环境中同时安装两个版本。根据经验,Python的包管理通常不允许同一个包的不同版本共存,因为包名称相同(如torch)会导致冲突。用户提供的引用中提到,如果强行安装不同版本的torch,可能会覆盖现有安装,导致不可预期的问题[^4][^5]。例如,如果先安装CPU版本,再安装GPU版本,后者会覆盖前者,反之亦然。 此外,用户可能需要同时使用两种环境的情况,比如在没有GPU的机器上运行CPU代码,而在有GPU的机器上运行加速代码。这时,使用虚拟环境(如conda或venv)分别创建独立的环境可能更合适。每个环境可以安装对应的PyTorch版本,避免冲突[^1][^3]。 还有一个考虑点是PyTorch的设计是否支持同时加载两个版本的库。通常,在运行时,PyTorch会检测可用的CUDA设备,并自动使用GPU版本。如果安装了GPU版本,即使代码中没有显式调用CUDA函数,PyTorch也会优先使用GPU资源。因此,同时安装两个版本不仅技术上不可行,也没有实际必要,因为GPU版本已经包含CPU功能。 最后,我需要总结这些信息,给出清晰的回答,并建议用户使用虚拟环境来管理不同版本的PyTorch,确保项目的兼容性稳定性。</think>PyTorch无法在同一个Python环境中同时安装CPUGPU版本。以下是具体分析及解决方案: ### 一、版本冲突机制 PyTorch的CPUGPU版本通过包名`torch`进行统一管理。安装时会根据后缀(如`cuXXX`表示CUDA版本)决定具体类型: - CPU版本:例如`torch-1.10.0-cp37-cp37m-win_amd64.whl` - GPU版本:例如`torch-1.10.0+cu113-cp37-cp37m-win_amd64.whl` 由于包名相同,后安装的版本会直接覆盖前一个版本[^4]。例如: ```bash # 先安装CPU版本 pip install torch==1.10.0 # 再安装GPU版本会导致覆盖 pip install torch==1.10.0+cu113 ``` ### 二、推荐解决方案 使用虚拟环境隔离不同需求: 1. **Conda环境管理**(推荐): ```bash # 创建GPU环境 conda create -n pytorch_gpu python=3.8 conda activate pytorch_gpu pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113 # 创建CPU环境 conda create -n pytorch_cpu python=3.8 conda activate pytorch_cpu pip install torch torchvision ``` 通过`conda activate`切换环境即可[^3] 2. **Docker容器方案**: ```dockerfile # GPU容器 FROM pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime # CPU容器 FROM pytorch/pytorch:1.10.0-cpu ``` ### 三、版本兼容性验证 安装后可通过以下代码检测当前环境版本: ```python import torch print(torch.__version__) # 输出如1.10.0+cpu或1.10.0+cu113 print(torch.cuda.is_available()) # GPU版本返回True ``` ### 四、特殊需求处理 若需在GPU版本中使用CPU模式,可直接通过代码指定设备: ```python device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tensor = torch.randn(3,3).to(device) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清清竹林

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值