Think about Zuma Game. You have a row of balls on the table, colored red(R), yellow(Y), blue(B), green(G), and white(W). You also have several balls in your hand.
Each time, you may choose a ball in your hand, and insert it into the row (including the leftmost place and rightmost place). Then, if there is a group of 3 or more balls in the same color touching, remove these balls. Keep doing this until no more balls can be removed.
Find the minimal balls you have to insert to remove all the balls on the table. If you cannot remove all the balls, output -1.
Example 1:
Input: board = "WRRBBW", hand = "RB" Output: -1 Explanation: WRRBBW -> WRR[R]BBW -> WBBW -> WBB[B]W -> WW
Example 2:
Input: board = "WWRRBBWW", hand = "WRBRW" Output: 2 Explanation: WWRRBBWW -> WWRR[R]BBWW -> WWBBWW -> WWBB[B]WW -> WWWW -> empty
Example 3:
Input: board = "G", hand = "GGGGG" Output: 2 Explanation: G -> G[G] -> GG[G] -> empty
Example 4:
Input: board = "RBYYBBRRB", hand = "YRBGB" Output: 3 Explanation: RBYYBBRRB -> RBYY[Y]BBRRB -> RBBBRRB -> RRRB -> B -> B[B] -> BB[B] -> empty
Constraints:
- You may assume that the initial row of balls on the table won’t have any 3 or more consecutive balls with the same color.
- The number of balls on the table won't exceed 16, and the string represents these balls is called "board" in the input.
- The number of balls in your hand won't exceed 5, and the string represents these balls is called "hand" in the input.
- Both input strings will be non-empty and only contain characters 'R','Y','B','G','W'.
Accepted
12,565
Submissions
31,181
-------------------------------------------------------------------------------------------------------------------
这题猛地看上去是动态规划,但是不知道怎么写递推表达式。然后搜索,不知道怎么DFS下去。参考了别的人想法,每次算出某一个连续小段要多少,然后拼接字符串递归下去。。。
from collections import Counter
class Solution:
def dfs(self, board, inhands, upper):
i, l = 0, len(board)
res = upper
if (l == 0): #bug2: miss the return condition
return 0
while (i < l):
j = i + 1
while (j < l and board[j] == board[j - 1]):
j += 1
need = max(3 - (j - i), 0)
if (inhands[board[i]] >= need):
inhands[board[i]] -= need
sub = self.dfs(board[:i] + board[j:], inhands, upper)
res = min(res, need + sub)
inhands[board[i]] += need
i = j # bug1 miss
return res
def findMinStep(self, board, hand):
upper = 16*2
res = self.dfs(board, Counter(hand), upper)
return -1 if res == upper else res #bug3
s = Solution()
print(s.findMinStep("WRRBBW","RB"))