距离第一次找运筹优化方向的实习工作,马上就要满4年了。我读博所在的实验室并不主攻运筹优化,所以在确定要转到工业界做运筹优化这件事情后,就注定在未来的很长一段时间内,我要自己一路摸索了。每一次考虑新工作之前,我都得反思三个问题:自己预设的目标完成了没?公司是否有额外的惊喜?对下一家公司的期望是什么?截至当前,我已经在3个对运筹优化有需求的公司待过。从已有的认知来看,这几步路走的还算稳健。趁着秋招季,分享一下我的思考心得,给找工作的童鞋做参考。
走出校园前,自我判断是:有一定的运筹优化算法能力,但是缺乏运筹优化的场景积累。要进入工业界,应该先多了解一些运筹优化的问题场景。我第一家公司选择的是创新奇智。这是一家ToB公司,简单理解,ToB就是其他公司提供运筹优化的业务需求,创新奇智为它们提供算法、软件和平台等支持。这种类型的公司还有杉树科技和优桦林。还有一类公司,也是ToB,但是业务场景会有明显侧重,比如极智嘉、迅蚁和海柔更关注机器人应用;侧推信息则聚焦排班管理。因为不同的甲方公司会有不同的业务需求,所以在这类公司可以接触到各种各样的运筹优化问题,对于扩展视野是极有帮助的。不过因为乙方的属性,在和甲方公司合作的过程中,很容易出现合作深度不佳的情况,比如必要的基础数据获取困难、运筹算法的反馈不及时等,最终导致算法停留在表面,无法有效迭代。
我选择的第二家公司是永辉超市,这是一家有自己实际业务的公司,算法团队研发的产品会直接应用于自己的业务场景,所以在这里算法和业务的合作沟通会明显顺畅许多。这类公司就非常多了,包括:开水团、阿里、京东等头部公司,运筹团队规模较大;字节跳动、华为、虾皮、滴滴、顺丰等公司(永辉应该在这里),运筹团队规模适中;国家电网、中石油/中石化、瑞幸咖啡、58同城、长城汽车、蒙牛、BOSS直聘等公司,运筹团队人数较少,一般不会超过3个人。在永辉,最大的收获是,有机会经历一个完整的从算法开发、落地测试、算法迭代、最终全面推广的全流程。这个经验对我来说,是弥足珍贵的。后来和其他同行小伙伴们谈起,也能明显感受到他们羡慕的眼神。
不过生命在于折腾,喜欢挑战的我还想看看更大的世界。看什么呢?应该是想看,公司是如何把一项业务从0起步,做到国内领先;运筹优化算法乃至其他算法在其中发挥了怎样的价值;各种算法如何有机协作,共同支撑好整个业务;每一个算法如何体系化地完成从0到1的搭建,以及从1到100的迭代和完善。头部大厂的优势在于,有追求卓越的长期目标和成功经验,有足够大和优秀的团队去缩短做成这一切的时间,有规范化的项目管理机制和个人成长机制。所以我现在来到了开水团。在这边的时间比较短,甚至还没通过转正,所以不做过多评价。不过从现有的认知来看,还是符合预期的。
有时候也会想,如果一开始就直接选择类似开水团这样的头部大厂,会不会更好?至少当年刚毕业时,确实是有这个机会的。关于这一点,我的思考结论是:每一次的变化都在努努力就能够得着的状态,所以我的成长路线是更加平稳、扎实和可控的;最终的结局固然重要,沿途的风景也是别具风采的,创新奇智和永辉超市给我提供的很多机会,在大厂短时间内也是很难获得的。