//注意差分约束只能求>=或<=,SPFA判断有无负权回路。
//对于差分不等式,a - b <= c ,建一条 b 到 a 的权值为 c 的边,求的是最短路,得到的是最大值;对于不等式 a - b >= c ,建一条 b 到 a 的权值为 c 的边,求的是最长路,得到的是最小值。存在负环的话是无解,求不出最短路(dist[ ]没有得到更新)的话是任意解。
//建图中有时候会用到一个虚点,这个点到图中每个实点的距离(dist[ ])为0,当然这个点的作用是方便图中的点入队(spfa算法),然后使这些实点的dist[ ]值得到更新。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=105;
struct node{
int v, w, next;
}edge[maxn*2];
int pre[maxn], cnt[maxn*2], inqueue[maxn*2], d[maxn], n, m, num;
void add_edge(int s, int e, int w){
edge[num].v=e;
edge[num].w=w;
edge[num].next=pre[s];
pre[s]=num++;
}
void init(){
int i, x, y, z;
char str[5];
memset(pre, -1, sizeof(pre));
memset(inqueue, 0, sizeof(inqueue));
memset(cnt, 0, sizeof(cnt));
for(i=1; i<=n+1; i++)
d[i]=INF;
num=0;
scanf("%d", &m);
while(m--){
scanf("%d%d%s%d", &x, &y, str, &z);
if(strcmp(str, "gt")==0)
add_edge(x, x+y+1, -z-1);
else add_edge(x+y+1, x, z-1);
}
for(i=1; i<=n+1; i++)
add_edge(0, i, 0);
}
bool spfa(){
queue<int > q;
int head, s;
q.push(0);
inqueue[0]=1;
cnt[0]=1;
d[0]=0;
while(!q.empty()){
head=q.front();
q.pop();
inqueue[head]=0;
s=pre[head];
while(s!=-1){
if(d[edge[s].v]>d[head]+edge[s].w){
d[edge[s].v]=d[head]+edge[s].w;
if(!inqueue[edge[s].v]){
inqueue[edge[s].v]=1;
cnt[edge[s].v]++;
q.push(edge[s].v);
if(cnt[edge[s].v]>=n+1)return false;
}
}
s=edge[s].next;
}
}
return true;
}
int main(){
//freopen("1.txt", "r", stdin);
while(scanf("%d", &n)&&n){
init();
if(spfa())printf("lamentable kingdom\n");
else printf("successful conspiracy\n");
}
return 0;
}