poj 1364 King 差分约束

//注意差分约束只能求>=或<=,SPFA判断有无负权回路。

//对于差分不等式,a - b <= c ,建一条 b 到 a 的权值为 c 的边,求的是最短路,得到的是最大值;对于不等式 a - b >= c ,建一条 b 到 a 的权值为 c 的边,求的是最长路,得到的是最小值。存在负环的话是无解,求不出最短路(dist[ ]没有得到更新)的话是任意解。

//建图中有时候会用到一个虚点,这个点到图中每个实点的距离(dist[ ])为0,当然这个点的作用是方便图中的点入队(spfa算法),然后使这些实点的dist[ ]值得到更新。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=105;
struct node{
    int v, w, next;
}edge[maxn*2];
int pre[maxn], cnt[maxn*2], inqueue[maxn*2], d[maxn], n, m, num;

void add_edge(int s, int e, int w){
    edge[num].v=e;
    edge[num].w=w;
    edge[num].next=pre[s];
    pre[s]=num++;
}
void init(){
    int i, x, y, z;
    char str[5];
    memset(pre, -1, sizeof(pre));
    memset(inqueue, 0, sizeof(inqueue));
    memset(cnt, 0, sizeof(cnt));
    for(i=1; i<=n+1; i++)
    d[i]=INF;
    num=0;
    scanf("%d", &m);
    while(m--){
        scanf("%d%d%s%d", &x, &y, str, &z);
        if(strcmp(str, "gt")==0)
        add_edge(x, x+y+1, -z-1);
        else add_edge(x+y+1, x, z-1);
    }
    for(i=1; i<=n+1; i++)
    add_edge(0, i, 0);
}

bool spfa(){
    queue<int > q;
    int head, s;
    q.push(0);
    inqueue[0]=1;
    cnt[0]=1;
    d[0]=0;
    while(!q.empty()){
        head=q.front();
        q.pop();
        inqueue[head]=0;
        s=pre[head];
        while(s!=-1){
            if(d[edge[s].v]>d[head]+edge[s].w){
                d[edge[s].v]=d[head]+edge[s].w;
                if(!inqueue[edge[s].v]){
                inqueue[edge[s].v]=1;
                cnt[edge[s].v]++;
                q.push(edge[s].v);
                if(cnt[edge[s].v]>=n+1)return false;
                }
            }
            s=edge[s].next;
        }
    }
    return true;
}

int main(){
    //freopen("1.txt", "r", stdin);
    while(scanf("%d", &n)&&n){
        init();
        if(spfa())printf("lamentable kingdom\n");
        else printf("successful conspiracy\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值