科研
文章平均质量分 66
TayYoung
相互学习
展开
-
理解《A Survey on Transfer Learning》
传统机器学习的领域假设训练数据和测试数据属于相同的特征空间并在同一分布上。然而,现实应用中这种假设往往得不到满足。在某些情况下成功地进行知识迁移能够很大程度上提高学习的性能,也同时降低了标记目标领域数据带来的大量时间和人力成本。近年来,迁移学习已经成为一种解决知识迁移问题的新型学习框架。原创 2017-03-08 11:24:09 · 5026 阅读 · 1 评论 -
R-CNN理解
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recogniti原创 2017-12-19 21:55:11 · 530 阅读 · 0 评论 -
生成对抗网络学习
生成对抗网络:这种框架同时训练两种模型:生成模型(G,用于捕获数据的分布)以及判别模型(D,用于预测一个样本来自于训练数据而不是G)。原创 2017-12-04 17:09:18 · 2184 阅读 · 0 评论 -
《Generative Adversarial Text to Image Synthesis》阅读理解
从文本描述自动合成真实的图像,也就是把人类所写的一句描述性文本翻译成一系列像素点。原创 2017-12-05 20:52:12 · 3470 阅读 · 0 评论 -
MS COCO数据集分析
MS COCO数据集分析COCO数据集有2014和2017两个版本,我主要是关于看了2017版,由于我希望使用Mask RCNN检测图片中的动物,所以非常关注对象检测的类别。在官网下载标注文件 下载得到annotations_trainval2017.zip标注文件,解压后有以下6个文件 对象标注信息在instances_**.json文件中 COCO数据集用于对象检测任务,...原创 2018-04-10 21:52:24 · 3605 阅读 · 1 评论 -
运行Faster RCNN总结
运行Faster RCNN总结在科研期间,做目标检测的任务,运行基于TensorFlow的Faster RCNN,进行了总结:环境tensorflow 1.6.0gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6 ubuntu1~16.04.9)运行期间遇到的错误./lib/roi_pooling_layer/roi_pooli...原创 2018-09-07 17:07:55 · 707 阅读 · 0 评论