运行Faster RCNN总结

运行Faster RCNN总结

在科研期间,做目标检测的任务,运行基于TensorFlow的Faster RCNN,进行了总结:

环境

  1. tensorflow 1.6.0
  2. gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6 ubuntu1~16.04.9)

运行期间遇到的错误

  1. ./lib/roi_pooling_layer/roi_pooling.so: undefined symbol: _ZTIN10tensorflow8OpKernelE
    make.sh添加TF_LIB=$(python -c ‘import tensorflow as tf; print(tf.sysconfig.get_lib())’)
    在g++配置后添加-D_GLIBCXX_USE_CXX11_ABI=0
  2. Loaded network ./data/VGGnet_fast_rcnn_iter_70000.ckpt
    段错误:I also encountered ‘Segmentation Fault(core dumped)’ problem as @serhannn was, while i found i had made a stupid mistake: I run gpu mode with cpu version of tensorflow.
    After update tensorflow-gpu & run make one more time it worked well. With Ubuntu16.04 & CUDA8 & cudnn5 & tensorflow-gpu-1.3.0
  3. 测试模型时,设置device_id为非0会报错,
    Loading model weights from ./data/VGGnet_fast_rcnn_iter_70000.ckpt cudaCheckError() failed : invalid resource handle
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值