1、Vector
数学向量,MLlib既支持稠密向量也支持稀疏向量。
稠密向量: 向量的每一位都存储下来。
稀疏向量:存储非零位以节约空间
2、LabeledPoint
表示带标签的数据点,包含一个特征向量与一个标签。
3、Model
训练算法的结果,通过predict()方法对新的数据进行预测
附:操作向量的基本实例
- object VectorsTest {
- def main(args: Array[String]): Unit = {
- //创建稠密向量
- val denseVec1 = Vectors.dense(1, 2, 3)
- val denseVec2 = Vectors.dense(Array(1.0, 2.0, 3.0))
- println(denseVec1)
- println(denseVec2)
- //创建稀疏向量
- val sparseVec1 = Vectors.sparse(4, Array(0, 2), Array(1.0, 2.0))
- println(sparseVec1)
- }
- }