一.分类算法(Classification)监督学习算法
预测所属类别(两个类别中的一个或多个类别中的一个)
1.二分类算法(Binary Classification)
a.支持向量机(linear SVMs)
b.逻辑回归(logisitc regression)
c.决策树 (decision trees)
d.随机森林(random forests)
e.梯度提升树算法(gradient-boosted trees)
f.朴素贝叶斯算法(naive Bayes)
2.多分类算法。
a.逻辑回归(logisitc regression)
b.决策树 (decision trees)
c.随机森林(random forests)
d.朴素贝叶斯算法(naive Bayes)
应用场景:
a.垃圾邮件分类(是,不是)
b.性别预测(男,女)
c.广告是否点击预测(是,不是)
d.水果类别预测(西瓜,香蕉,苹果,梨)
二.回归算法(regression)
预测一个连续的傎
1.决策树(decision trees)
2.线性回归 (Linear Regression)
Linear Regression
L1正则化==>Lasso Regression
L2正则化==>ridge regression
3.随机森林 (random forests)
4.梯度提升树算法 (gradient-boosted trees)
应用场景:
a.某天天气气温预测(比如:4-25)
b.某天订单预测
c.股票涨跌幅度预测
三.推荐算法(Collaborative filtering)
看了又看,买了又买,买了这个商品的用户还买了别的
1.协同过滤算法
交替最小二乘法(ALS)
2.关联规则算法(购物篮算法)
频繁模式提升树算法(FP-growth)
四.聚类算法(Clustering)
研究对象特征,进行分类的统计方法
聚类算法和分类算法有个最大的区别,缺乏历史可靠资料
预测人的性别
(短发,胡子,喉结)==>男
(长发,没胡子,皮肤白,没有喉结)==>女
以上是有历史可靠资料(经验),可以使用分类算法进行分类(监督学习)
外星人
需要去研究外星人(研究对象)的特征,将有相同特性的外星人,归为一类,来确定外星人应该分为哪些类别
有眼睛归为一类
皮肤白的归为一类
个子高的归为一类
有特异功能的归为一类
以上由于缺乏历史可靠资料(经验),那么就需要去研究对象的特性,将有相同特性的归为一类,来确定研究对象的类别
1.K-均值算法(K-means)
五.集成(Ensembles)学习算法(融合学习算法)
将多个机器学习算法合在一起进行预测,然后将预测的结果进行合并
1.随机森林(Random Forests)
底层N颗树构成
2.梯度提升树算法(Gradient-Boosted Trees)
底层是RF算法
关于机器学习的学习方法
实践-->理论-->实践
机器学习的编程步骤
1.加载数据,进行预处理。
2.提取特征工程。
3.将提取的特征工程数据,交给算法进行训练,得到模型。
4.使用模式进行预测。