本文是对国立台湾大学海洋研究所张逸中博士论文《二维地球物理资料之自动化线型描绘》的学习理解
方法概述
文档介绍了两类山脊线自动提取方法(PPA与MST),此类方法的目标是快速,自动,准确地提取DEM格式图像中山脊线(或山谷线),在水文地质工程应用方面具有特殊意义,后续章节将分别展开介绍。
PPA方法文献参考来源为[1-2],其主要步骤如图2.0所示,文字描述下(图示为程序实际运行结果,参数设定有待优化):
第一步,按预设下采样步长,对灰度地形图进行下采样,如图2.1所示。
第二步,计算下采样图像中各点权重值,具体方法如下:以当前下采样点为圆心,以指定半径画圆。将上述圆形区域分为8等分,求取每个区域内参考点高程均值(区域内所有下采样点高程值之和除以有效下采样点数)。此时可得到当前下采样点为中心的8临域矩阵,按照文献[4]所述方法可计算得到当前下采样点的最终加权值。加权计算的一个目的是为了拉开各下采样点间权重值差异度,以便后续处理。
第三步(可选步骤),可设置一个过滤阈值,剔除加权后权值较低的部分下采样点。
第四步:对所有采样点进行判断,选取山脊线目标点。山脊线目标点的原文定义:
“剖面长度剖面辨識的過程為定義一剖面長度,以一資料點為中心,順著四個網格點排列的方向(通常為N-S,E-W,NE-SW及NW-SE)觀察鄰近點。若從剖面之兩翼皆可找到至少一點低於中心點,則此中心點即被視為一目標點。可以想見剖面若長於三個網格點時,除了中心之高點,鄰近山脊之資料點亦可能被視為目標;另一方面,若剖面恰好定義為三個網格點,則與簡單的局部高點辨識無異。這種增長辨識剖面的動作,以另一角度而言也是擴張程式視野的一種方式。其正面效果是保障了線型特徵在平面上的連續性;但同時也使線型特徵本身變得較寬,位置較不明確。通常在資料品質較差,而我們又希望連線的連續性較好時會傾向選擇較長的辨識剖面。在本文中爾後所展示的例子皆以五點的剖面進行剖面辨識,對於一般的資料而言,這個長度已足以彌補絕大多數偶發的不連續。”
第五步,连接目标点,每一个下采样点最多有4个方向共8条连线。需要注对角线连线取两个方向(NE-SW及NW-SE)中权重较大的方向即可。
第六步,破除封闭多边形,原文描述:
“在ALEP程式中,目標辨認及聯結的條件相當寬鬆,因此初步聯結之線段群中會有相當多的封閉曲線(多邊形)。通常此類多邊形只是聯結過程中並未考慮廣域資料趨勢以決定較佳連線的結果。因此我們首先以此程式單元拆除所有多邊形中加權值最小的一邊。此舉可使連串的多邊形簡化為許多樹枝狀的結構,進入後續處理不需輸入任何參數。”
第七步(可选步骤),低加權線段排除,原文描述:
“於ALEP中,低加權值之線段代表其明確度或可靠性較低。此程式單元可由使用者選定需排除的線段加權值門檻(Threshold of Segment Weight),低於此門檻值之線段聯結登錄將被取銷。此項處理基本上與低加權點排除的功能類似,但在程式中可以和以下幾個步驟互相組合反覆測試其效果。”
第八步(可选步骤),尾端縮減,原文描述:
“此單元可在不破壞連線連續性的前題下縮短連線的尾端。執行方式為先搜尋全圖中的端點,再逐一取銷其聯結(見圖2-5),此動作可依使用者之需要重覆多次。其效果包括清除主幹線兩側之許多短小分枝,及長線尾端較不確定之過度延伸。”
第九步(可选步骤),連線平滑化,原文描述:
“以聯結網格點所形成的連線群在連線並非落於網格點排列方向時,通常會以較粗糙的鋸齒狀折線呈現。這種情況基本上起因於數位資料的密度及排列方向的有限性。換言之,若將資料圖幅視為一個二維的連續函數,這種折線情況應不致出現。因此以某些準則使目標點的排列更為平滑連續,應為一使線型更趨近事實的步驟。類似之處理亦可見於重磁資料的邊界描繪(Blakely and Simpson, 1986)。”具体平滑效果间MST方法中实验结果。
参考文献效果图:
参考文献
[1] 《二维地球物理资料之自动化线型描绘》;
[2] 《AUTOMATIC EXTRACTION OF RIDGE AND VALLEY AXES USING THE PROFILE RECOGNITION AND POLYGON-BREAKING ALGORITHM》;
[3] 《Minimum Spanning Trees for Valley and Ridge Characterization in Digital Elevation Maps》;
[4] 《Approximating edges of source bodies from magnetic or gravity anomalies》;