如何用神经网络逼近一个积分函数

毕设中的一个小创新点。 首先已经被证明任意连续函数都可以用3层神经网络无线逼近。

背景是AWGN信道下极化码信息位的选择问题。流程中的复杂度主要存在与求函数的反函数问题。神经网络既然可以实现任意连续函数,那么输入输出对调训练出来的网络得到的就是原函数的反函数。虽然有思路但是怎么做一点没有办法一步一步实现。

首先MATLAB实现不定积分 sysm x        int(y,a) 其中y=tanh(a/2)*exp(-(a-x)^2/4*x)

z=1-1/sqrt(4*pi*x)*y

半途而废老师说这个做的不行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值