题目大意
给定一个有n个节点的无向无环图,在尽量少的节点上放灯,使得所有的被照亮,每盏灯可以照亮以他为一个端点的所有边,在灯的总数最小的前提下,被两盏灯照亮的边应该尽量大;
分析
注意题意,给定的是无向无环图,即“森林”,有多棵树组成,经典的树上的动态规划
此题目要求的优化量有两个,一个是a尽量小,a为灯的总数,另一个是b尽量小,b为被两盏灯照亮的边
为了统一起见我们把b尽量大替换为尽量小,c是被一盏灯照亮的边,我们用x代表两个量
x=Ma+c;
一般来说当优化两个量v1,v2的时候,我们会转化为一个量,而且还需要保存v1与v2的关系,因此我们定义一个量M,M是理论上比|v1-v2|最大值还要大的数;这样的话两个量不需要互相干涉,却又能保存联系…因此对于上面的公式当x取最小值的时候因为M固定所以a,c 必定取最小值。
每棵树互不相干,可以单独优化,最后把答案加起来即可;
对于一棵树,我们定义d(i)表示以i为节点的树最大ans值,决策有两种在i处放灯或是不放灯,那么问题就出现,因为我们是自顶往下递推,在i处放灯或者不妨灯一定会影响子节点的决策。因此我们需要把i的节点的决策也作为状态的一部分纳入状态转移当中;
我们定义d(i,j)表示i的父节点做了j这样的决策(1,表示放灯,0表示不放灯)
决策一: i不放灯,仅当j=0或者自身是跟根节点。此时d(i,j)=sum{d(k,0)|k是i的子节点} 如果i不是根,ans++,表示节点i与其父节点这条边上只有一盏灯照亮;
决策二: i放灯,此时d(i,j)=sum{d(k,1)|k是i的子节点}+M;如果j为0且i不是根节点,ans++,因为i与父节点这条边上只有一盏灯照亮/
代码如下
#include<iostream>
#include<algorithm>
#include<vector>
#include<cstdio>
#include<string.h>
#define maxn 1000+20
using namespace std;
int d[maxn][2], vis[maxn][2];
int n, m;
vector<int> gr[maxn];
const int M = 2000;
int dp(int i, int j, int f)
{
if (vis[i][j]) return d[i][j];
vis[i][j] = 1;
int &ans = d[i][j];
ans = M;
for (int k = 0; k < gr[i].size(); k++) {
if (gr[i][k] != f)
ans += dp(gr[i][k], 1, i);
}
if (!j&&f >= 0) ans++; //当前节点与父节点只有一个灯照亮;
if (j || f < 0) {
int sum = 0;
for (int k = 0; k < gr[i].size(); k++) {
if (gr[i][k] != f) {
sum += dp(gr[i][k], 0, i);
}
}
if (f >= 0) sum++; //i节点不是根;
ans = min(sum, ans);
}
return ans;
}
int main()
{
/*int t;
cin >> t;
while (t--) {
cin >> n >> m;
int u, v;
for (int i = 0; i < n; i++)
gr[i].clear();
for (int i = 0; i < m; i++) {
cin >> u >> v;
gr[u].push_back(v);
gr[v].push_back(u);
}
memset(vis, 0, sizeof(vis));*/
int ans = 0;
for (int i = 0; i < n; i++)
if (!vis[i][0]) ans += dp(i, 0, -1);
printf("%d %d %d \n", ans / M, m - ans % M, ans%M);
}
return 0;
}