组合数计算及其求模

- 前言
关于n!的一个小问题 -如何求n!有多个p;
最直接的

int cal(int n, int p)  //计算n!有多少个p
{
	int ans = 0;
	for (int i = 2; i <= n; i++) {
		int temp = i;
		while (temp%p == 0)  ans++, temp /= p;
	}
	return ans;
}

当n>18的时候会无法承受,
另一种方法
n!中有(n/p+n/p2+……)个p因子

int cal(int n, int p) {
	int ans = 0;
	while (n) { 
	ans += n / p;
	n /= p; }
	return ans;
}

递归写法

int cal(int n, int p) {
	if (n < p) return 0;
	else  return n / p + cal(n / p, p);
}
  • 问题一:如何计算组合数Cmn
    直接利用公式
ll  C(ll n, ll m) {
	ll ans = 1;
	for (ll i = 1; i <= n; i++) ans *= i;
	for (ll i = 1; i <= m||i<=n-m; i++)
		if (i <= n - m)   ans /= (i*i);
		else   ans / i;
	return ans;
}

第二种递推公式
C(n,m)=C(n-1,m)+C(n-1,m-1);

ll C(ll n, ll m) {
	if (m == 0 || m == n)  return 1;
	return C(n - 1, m) + C(n - 1, m - 1);
}

记忆化搜索

ll res[67][67] = { 0 };
ll C(ll n, ll m) {
	if (m == 0 || m == n)  return 1;
	if (res[n][m] > 0)  return res[n][m];
 	return res[n][m]=C(n - 1, m) + C(n - 1, m - 1);
}	

打表

void C(ll n) {
	for (int i = 0; i <= n; i++)
		res[i][0] = res[i][i] = 1;
	for (int i = 2; i <= n; i++) {
		for (int j = 1; j <= i / 2; j++){
			res[i][j] = res[i - 1][j] + res[i - 1][j - 1];
			res[i][i - j] = res[i][j];
		}
	}
}

方法三: 通过定义式


ll C(ll n, ll m) {
	ll ans = 0;
	for (ll i = 1; i <= m; i++)
		ans *= (n - m + i) / i;
	return ans;
}	

- 问题二:如何取模P
对于不大的n直接使用前两种方法取模即可
现在介绍另外两种方法
1 如果m<p,并且p是素数


int C(int n, int m, int p) {
	int ans = 1;
	for (int i = 1; i <= m; i++) {
		ans = ans * (n - m + 1) % p;
		ans = ans * inv(i, p) % p;     //inv函数求在模p的情况下i的逆元
	}
	return ans;

}

2


int C(int n, int m, int p) {
	int ans = 1, nump = 0;
	for (int i = 1; i <= m; i++) {
		int temp = n - m + i;
		while (temp%p == 0)  nump++, temp /= p;
		ans = ans * temp%p;
		temp = i;
		while (temp%p == 0)  nump--, temp /= p;
		ans = ans * inv(temp, p) % p;
 	}
	if (nump > 0)  return 0;
	else  return ans;
}

3 lucas 定理

int lucas(int n, int m) {
	if (m == 0)  return 1;
	return C(n%p, m%p)*lucas(n / p, m / p) % p;   //搭配之前的计算C的函数
}

到现在为止,我们说的都是p为素数的情况,那么P不为素数应该怎么算呢;
我们将p分解为几个质因子相乘的情况,分别求模并存入a数组,质因子的阶乘存入m数组中,最后用中国剩余定理求解。完成!!!1
先预处理 素数表;

int n;
void seize(int n) {			//筛掉素数
	int m = sqrt(n) + 0.5;
	memset(vis, 0, sizeof(vis));
	for (int i = 2; i <= m; i++)  //因子最大不超过sqrt(n),以其为界
		if (!vis[i]) {
			for (int j = i * i; j <= n; j += i)   //最小质因子的倍数一定是合数;
				vis[j] = 1;
		}
}

void get_prime(int n)
{
	seize(n);
	int c = 0;
	for (int i = 2; i < n; i++) {
		if (!vis[i])   prime[c++] = i;
	}
}

中国剩余定理

void exgcd(ll a, ll b, ll &r, ll x, ll y) {
	if (!r) {
		x = 1, y = 0;
		r = a;
	}
	else {
		exgcd(b, a%b, r, y, x);
		y = y - x * (a / b);
	}
}  
ll china(ll n, ll *a, ll *m) {
	ll M = 1, v, y, d, x = 0;
	for (int i = 0; i < n; i++)  M *= m[i];
	for (int i = 0; i < n; i++) {
		ll w = M / m[i];
		exgcd(m[i], w, d, d, y);
		x = (x + y * w*a[i]) % M;
	}
	return (x + M) % M;
}

现在的问题就是求a,m数组


ll pow(int n, int a) {   //n^a
	if (a == 0)  return 1; 
	if (a == 1) return n;
	ll ans = pow(n, a / 2);
	ans *= ans;
	if (ans & 1) ans *= n;
	return ans;
}
ll inv(ll a, ll n) {  //求逆
	ll d, x, y;
	exgcd(a, n, d, x, y);
	if (d == 1)  return (x + n) % n;
	else return -1;
}
ll cal(int n,int m,int p,int a) {    //求出C(n,m)mod p注意p现在仍然有可能是素数
	ll ans = 1, nump = 0,temp0=1,temp1=1;
	for (int i = 1; i <= m; i++) {
		temp0 = n-m+i;
		while (temp0%p)  nump++, temp0 /= p;
		temp1 = i*temp1;
		while (temp1%p==0)  nump--, temp1 /= p;
		ans = ans * temp0%pow(p,a);
		if (nump >= 0) { ans *= inv(temp1, pow(p, a)) % pow(p, a); temp1 = 1; }
 	}
	//nump 最后一定大于0,如果不大于0就证明分母上有消除不了的因子,
	//如此的化就证明这个数是小数,自然也就不存在取模问题了
	return ans;
}
ll a[maxn], mm[maxn];
ll c(int n, int m, int p) {
	int tot = 0;
	for (int i = 0; prime[i] <= p; i++) {
		int val = prime[i], x = 0;
		if (p%val == 0) {
			while (p%val == 0) x++, p /= val;
			a[tot] = cal(n, m, val, x);
			mm[tot++] = pow(val, x);
		}
	}	
	int ans = china(tot, a, mm);
	return ans;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值