NOJ1072自行车的碰撞——超时!

74 篇文章 0 订阅

自行车的碰撞

Time Limit(Common/Java):1000MS/3000MS          Memory Limit:65536KByte
Total Submit:69            Accepted:6

Description

某年某月咱们南邮终于允许广大同学在仙林校区内骑自行车了。但南邮人多车多,同一条路上交通越密集,撞车的危险就越高。

你的任务是监视交通并在其发生之前帮助检测到可能的碰撞。您有一个传感器,能帮助检测位置、方向和每辆行驶的自行车的速度。假设自行车的方向和速度保持不变,你的任务是确定是否有自行车将碰撞。这里,如果他们双方到达某一给定距离,我们认为每辆行驶的自行车发生碰撞。

Input

输入的第一行包含一个整数c,表示随后的测试案例数目。每个测试案例的开始行包括两个数字,n,自行车的数量,和r,碰撞距离。如果两辆自行车的距离在r厘米内,我们认为两辆自行车碰撞。自行车的数目不会多于1000辆。每辆自行车定义在一行,包括四个数字x,y,d,s。x和y分别给出自行车的当前位置往东和往北,从南邮仙林鼎山之顶为坐标原点,并将在-1000和1000(包含)之间。路足够的小,我们可以把它建模成一个水平面。数d表示自行车前进的方向,表示为从北方开始顺时针的角度(所以东方是90度)。数s表示自行车的速度(厘米/秒),值在0.001和1000之间。注意r,x,y,d,和s不一定是整数。如果输入数据x, y, d和s中的任何一个变化小于等于10^-6,则结果不发生变化。

Output

对于每一个测试案例,输出的一行包含一个整数,表示在任何两辆自行车相互之间进入了r厘米范围之前所经历的秒数,四舍五入至最接近的秒。如果没有自行车碰撞,则输出一行: No collision.

 

注意:输出部分的结尾要求包含一个多余的空行。

Sample Input

2
2 5
0 0 90 1
10 10 180 1
2 10
0 0 0 0
8 8 270 1

Sample Output

6
2

Source

“IBM南邮杯”个人赛2009


分析:Test3超时!思考中!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
哈夫曼编码是一种常用的数据压缩算法,可以将原始数据转换为更短的编码,从而减少存储空间。它的基本思想是:根据字符出现的频率,构建一颗二叉树,使得出现频率高的字符离根节点近,出现频率低的字符离根节点远。然后,对于每个字符,从根节点出发,沿着对应的路径到达该字符所在的叶子节点,记录下路径,作为该字符的编码。 哈夫曼编码的具体实现步骤如下: 1. 统计每个字符在原始数据中出现的频率。 2. 根据字符的频率构建哈夫曼树。构建方法可以采用贪心策略,每次选择出现频率最低的两个字符,将它们作为左右子节点,父节点的权值为两个子节点的权值之和。重复这个过程,直到只剩下一个根节点。 3. 对哈夫曼树进行遍历,记录下每个字符的编码,为了避免编码产生歧义,通常规定左子节点为0,右子节点为1。 4. 将原始数据中的每个字符,用它对应的编码来代替。这一步可以通过哈夫曼树来实现。 5. 将编码后的数据存储起来。此时,由于每个字符的编码长度不同,所以压缩后的数据长度也不同,但总体上来说,压缩效果通常是比较好的。 实现哈夫曼编码的关键在于构建哈夫曼树和计算每个字符的编码。构建哈夫曼树可以采用优先队列来实现,每次从队列中取出两个权值最小的节点,合并成一个节点,再将合并后的节点插入队列中。计算每个字符的编码可以采用递归遍历哈夫曼树的方式,从根节点出发,如果走到了左子节点,则将0添加到编码中,如果走到了右子节点,则将1添加到编码中,直到走到叶子节点为止。 以下是基于C++的代码实现,供参考: ```c++ #include <iostream> #include <queue> #include <string> #include <unordered_map> using namespace std; // 定义哈夫曼树节点的结构体 struct Node { char ch; // 字符 int freq; // 出现频率 Node* left; // 左子节点 Node* right; // 右子节点 Node(char c, int f) : ch(c), freq(f), left(nullptr), right(nullptr) {} }; // 定义哈夫曼树节点的比较函数,用于优先队列的排序 struct cmp { bool operator() (Node* a, Node* b) { return a->freq > b->freq; } }; // 构建哈夫曼树的函数 Node* buildHuffmanTree(unordered_map<char, int> freq) { priority_queue<Node*, vector<Node*>, cmp> pq; for (auto p : freq) { pq.push(new Node(p.first, p.second)); } while (pq.size() > 1) { Node* left = pq.top(); pq.pop(); Node* right = pq.top(); pq.pop(); Node* parent = new Node('$', left->freq + right->freq); parent->left = left; parent->right = right; pq.push(parent); } return pq.top(); } // 遍历哈夫曼树,计算每个字符的编码 void calcHuffmanCode(Node* root, unordered_map<char, string>& code, string cur) { if (!root) return; if (root->ch != '$') { code[root->ch] = cur; } calcHuffmanCode(root->left, code, cur + "0"); calcHuffmanCode(root->right, code, cur + "1"); } // 将原始数据编码成哈夫曼编码 string encode(string s, unordered_map<char, string> code) { string res; for (char c : s) { res += code[c]; } return res; } // 将哈夫曼编码解码成原始数据 string decode(string s, Node* root) { string res; Node* cur = root; for (char c : s) { if (c == '0') { cur = cur->left; } else { cur = cur->right; } if (!cur->left && !cur->right) { res += cur->ch; cur = root; } } return res; } int main() { string s = "abacabad"; unordered_map<char, int> freq; for (char c : s) { freq[c]++; } Node* root = buildHuffmanTree(freq); unordered_map<char, string> code; calcHuffmanCode(root, code, ""); string encoded = encode(s, code); string decoded = decode(encoded, root); cout << "Original string: " << s << endl; cout << "Encoded string: " << encoded << endl; cout << "Decoded string: " << decoded << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值