NOJ1109搜索(二)——二分搜索

74 篇文章 0 订阅

搜索(二)

时间限制(普通/Java):3500MS/10500MS          运行内存限制:65536KByte
总提交:796            测试通过:393

描述

给定有序整数序列(递增),判断指定整数是否存在。

输入

第一行是一个正整数:测试用例数目,最多为100。之后,每个测试用例包括三行:

l       第1行整数序列大小n,1≤n≤10000

l       第2行给出有序整数序列(递增),每个整数绝对值不超100000

l       第3行给出指定整数m,1≤m≤10050

输出

对于每个测试用例:

l       指定整数存在则输出“Yes”,否则输出“No”

注意:输出部分的结尾要求包含一个多余的空行。

样例输入

2
2
2 3
4
3
2 3 4
3

样例输出

No
Yes

题目来源

算法与数据结构设计2009



//搜索(二)——二分
#include<stdio.h>

int n, m;
int a[10000];

int fun(int low, int high)
{
	while(low <= high)
	{
		int mid = (low+high) / 2;
		if(a[mid] < m) low = mid+1; // +1
		else if(a[mid] > m) high = mid-1; // +1
		else return 1;
	}
	return 0;
}

int main()
{
	int ncase;
	scanf("%d",&ncase);
	while(ncase--)
	{
		scanf("%d",&n);
		for(int i=0;i<n;i++) 
			scanf("%d",&a[i]);
		scanf("%d",&m);
		if(fun(0, n-1)) printf("Yes\n");
		else printf("No\n");
	}
	return 0;
}


哈夫曼编码是一种常用的数据压缩算法,可以将原始数据转换为更短的编码,从而减少存储空间。它的基本思想是:根据字符出现的频率,构建一颗叉树,使得出现频率高的字符离根节点近,出现频率低的字符离根节点远。然后,对于每个字符,从根节点出发,沿着对应的路径到达该字符所在的叶子节点,记录下路径,作为该字符的编码。 哈夫曼编码的具体实现步骤如下: 1. 统计每个字符在原始数据出现的频率。 2. 根据字符的频率构建哈夫曼树。构建方法可以采用贪心策略,每次选择出现频率最低的两个字符,将它们作为左右子节点,父节点的权值为两个子节点的权值之和。重复这个过程,直到只剩下一个根节点。 3. 对哈夫曼树进行遍历,记录下每个字符的编码,为了避免编码产生歧义,通常规定左子节点为0,右子节点为1。 4. 将原始数据的每个字符,用它对应的编码来代替。这一步可以通过哈夫曼树来实现。 5. 将编码后的数据存储起来。此时,由于每个字符的编码长度不同,所以压缩后的数据长度也不同,但总体上来说,压缩效果通常是比较好的。 实现哈夫曼编码的关键在于构建哈夫曼树和计算每个字符的编码。构建哈夫曼树可以采用优先队列来实现,每次从队列取出两个权值最小的节点,合并成一个节点,再将合并后的节点插入队列。计算每个字符的编码可以采用递归遍历哈夫曼树的方式,从根节点出发,如果走到了左子节点,则将0添加到编码,如果走到了右子节点,则将1添加到编码,直到走到叶子节点为止。 以下是基于C++的代码实现,供参考: ```c++ #include <iostream> #include <queue> #include <string> #include <unordered_map> using namespace std; // 定义哈夫曼树节点的结构体 struct Node { char ch; // 字符 int freq; // 出现频率 Node* left; // 左子节点 Node* right; // 右子节点 Node(char c, int f) : ch(c), freq(f), left(nullptr), right(nullptr) {} }; // 定义哈夫曼树节点的比较函数,用于优先队列的排序 struct cmp { bool operator() (Node* a, Node* b) { return a->freq > b->freq; } }; // 构建哈夫曼树的函数 Node* buildHuffmanTree(unordered_map<char, int> freq) { priority_queue<Node*, vector<Node*>, cmp> pq; for (auto p : freq) { pq.push(new Node(p.first, p.second)); } while (pq.size() > 1) { Node* left = pq.top(); pq.pop(); Node* right = pq.top(); pq.pop(); Node* parent = new Node('$', left->freq + right->freq); parent->left = left; parent->right = right; pq.push(parent); } return pq.top(); } // 遍历哈夫曼树,计算每个字符的编码 void calcHuffmanCode(Node* root, unordered_map<char, string>& code, string cur) { if (!root) return; if (root->ch != '$') { code[root->ch] = cur; } calcHuffmanCode(root->left, code, cur + "0"); calcHuffmanCode(root->right, code, cur + "1"); } // 将原始数据编码成哈夫曼编码 string encode(string s, unordered_map<char, string> code) { string res; for (char c : s) { res += code[c]; } return res; } // 将哈夫曼编码解码成原始数据 string decode(string s, Node* root) { string res; Node* cur = root; for (char c : s) { if (c == '0') { cur = cur->left; } else { cur = cur->right; } if (!cur->left && !cur->right) { res += cur->ch; cur = root; } } return res; } int main() { string s = "abacabad"; unordered_map<char, int> freq; for (char c : s) { freq[c]++; } Node* root = buildHuffmanTree(freq); unordered_map<char, string> code; calcHuffmanCode(root, code, ""); string encoded = encode(s, code); string decoded = decode(encoded, root); cout << "Original string: " << s << endl; cout << "Encoded string: " << encoded << endl; cout << "Decoded string: " << decoded << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值