- 博客(97)
- 资源 (1)
- 收藏
- 关注

原创 第二章 | 分类问题 | F1-score | ROC曲线 | 精准率召回率 | tensorflow2.6+sklearn | 学习笔记
目录1. 学习目标2. 数据集介绍3. 二元分类器3.1 加载数据3.2 建立随机梯度下降(SGD)模型1. 学习目标本章以mnist数据集为例,研究二元分类器多元分类器精准率,召回率F1_scoreROC曲线2. 数据集介绍很普通的入门级数据集——mnist手写数字识别看看其中的一张图片# 展示图片def plot_digit(data): image = data.reshape(28, 28) plt.imshow(image, cmap = mpl.cm.
2021-08-28 21:06:19
2774
3
原创 ValueError: The following Variables were created within a Lambda layer | tensorflow2.3 | Mask-RCNN
有Tensorflow2.3兼容性问题的Mask RCNN的github项目:https://github.com/matterport/Mask_RCNNValueError: The following Variables were created within a Lambda layer (anchors) but are not tracked by said layer: <tf.Variable ‘anchors/Variable:0’ shape=(1, 261888, 4) dtype=f
2024-11-02 22:51:23
324
1
原创 多源图像融合——U2Fusion
这项研究提出了一种新颖的统一的无监督端到端图像融合网络,称为 U2Fusion,能够解决不同的融合问题,包括多模态、多曝光和多焦点情况。利用特征提取和信息测量,U2Fusion 自动估计相应源图像的重要性,并提出自适应的信息保留度。因此,不同的融合任务在同一框架中统一处理。基于自适应度量,训练一个网络以保持融合结果与源图像之间的自适应相似性。因此,通过避免在顺序地为不同任务训练单个模型时丢失先前融合能力,我们获得了一个适用于多个融合任务的统一模型。
2024-03-24 16:52:09
1131
原创 数据标注专业团队
自动化工具的出现:为了应对数据标注的规模和复杂性,许多自动化工具和平台已经出现,以加快标注过程并提高效率。为了确保标注数据的质量,标注行业开始关注质量控制和标准化的问题,建立标注指南和标准操作流程,以提高标注的一致性和可靠性。由于不同行业的数据具有特定的领域知识和标注需求,因此出现了垂直领域的数据标注服务提供商,专注于特定行业或应用领域的标注任务。在跟一些淘宝、多多商家老板合作后,客户一般付款后,中介是有20%左右的提成,我们主要是希望可以实现数据标注无中介化,有需求可以直接联系数据标注团队直接负责人,
2024-03-10 13:58:10
562
原创 最全 chrome driver
从这个链接中直接找对应的chrome和driver。超全chrome和driver的对应链接。在一些文章里的链接是找不到的!
2024-01-16 20:36:28
613
原创 Progressive Tree-Based Compression of Large-Scale Particle Data | 学习笔记
现有的方法存在缺点:1.要么只能很好地压缩小数据量,却对大数据量效率不高2.要么处理大数据量,但压缩不足为了实现有效的、可扩展的粒子位置压缩/解压缩,我们引入了新的粒子层次结构和相应的遍历顺序,在快速和低内存占用的同时,快速地减少了重构误差。我们的大规模粒子数据压缩解决方案是一个灵活的基于块的层次结构,支持渐进的、随机访问的和错误驱动的解码,其中错误估计可以由用户提供。对于低层节点编码,我们引入了新的方案,有效地压缩均匀和密集结构粒子分布。因此,我们提出的方法针对基于树的粒子压缩管道有。
2023-05-22 10:28:40
720
原创 GAMES101 计算机图形学 | 学习笔记 (上)
计算机图形学是利用计算机技术进行图像和视觉内容的创建、处理和显示的领域。它包括2D和3D图形,并利用各种技术、算法和工具来生成、修改和渲染图像。计算机图形学渲染:从3D模型生成逼真或风格化图像的过程,考虑到光照、阴影和其他视觉效果。建模:使用数学或几何技术创建物体或场景的数字表示。这涉及到定义物体的形状、结构和属性。动画:通过按顺序排列一系列图像或帧来创建运动的错觉。它涉及到关键帧、插值和骨骼动画等技术。模拟和虚拟现实:利用计算机图形学来模拟真实世界的现象或创建沉浸式虚拟环境。这包括。
2023-05-08 20:21:10
1116
原创 Potree | 前端展示点云可视化的框架
Potree是一个基于WebGL的点云可视化框架,可以在网页上交互式地展示海量点云数据,同时支持颜色、透明度、大小、形状等多种可视化效果。它可以快速加载大规模点云数据,并支持多种点云数据格式,包括等。(potree所需的数据格式)Potree基于JavaScript编写,是开源的软件,用户可以根据自己的需求进行修改和扩展。Potree不需要使用插件或其他附加软件,仅需一个支持WebGL的浏览器即可访问。Potree的主要特点高效的点云加载和渲染,支持多种点云格式;
2023-05-05 11:07:11
6860
2
原创 计算机视觉 | 人工智能 自己总结 (下)
在该示例代码中,我们首先加载 Haar 级联分类器目标检测和跟踪是计算机视觉中的重要应用,其可以识别图像或视频中的目标,并对其进行跟踪和定位。其中,目标检测通常被定义为在图像或视频中检测出特定类别的目标,而目标跟踪则是在一个视频序列中跟踪一个物体的位置。跟踪算法则是基于目标检测结果的基础上,追踪物体在图像或视频中的位置,使得在物体移动或者遮挡的情况下,依然能够准确地追踪物体。目标检测可以被视为一种分类问题,它的任务是在图像或视频中检测出特定类别的物体,并用边框框定它们的位置。
2023-04-24 19:53:28
1274
1
原创 计算机视觉 | 八斗人工智能 (中)
其中,fx和fy是相机的焦距,cx和cy是相机的光心在图像坐标系下的坐标,k1、k2、p1、p2和k3是畸变系数。函数cv2.undistort()的第一个参数是待矫正的图像,第二个参数是相机内参矩阵,第三个参数是相机的畸变系数。需要注意的是,在使用Canny边缘检测算法时,需要先对图像进行高斯模糊,这可以帮助去除图像中的噪声。Canny边缘检测是一种广泛使用的边缘检测算法,它能够检测出图像中的强边缘,并抑制图像中的弱边缘。标准差决定了高斯函数的形状,它越大,高斯函数的分布越宽,平滑效果越强,反之则越弱。
2023-04-20 09:47:49
694
原创 计算机视觉 | 八斗人工智能 (上)
在三次插值的过程中,首先计算出相邻的四个像素的插值函数,然后再将这四个插值函数组合成一个整体的插值函数。通俗来讲,就是在缩放或旋转图像时,使用周围4个像素的颜色信息来计算新像素的颜色值,以达到图像的平滑处理。也就是说,最邻近插值方法并不考虑离目标位置较远的像素,而是选择距离最近的像素来进行插值,因此它的计算速度非常快。是将原图像的直方图通过变换函数变为均匀分布的直方图,然后按照均匀直方图修改原图像,从而获得一幅会的分布均匀的新图像,直方图均衡化就是用一定的算法使直方图大致平和的方法。像素是分辨率的单位。
2023-04-19 10:56:21
437
原创 YOLO V8实战入门篇 | Anaconda3 | ultralytics
Ultralytics YOLOv8,由 Ultralytics 开发,是一种尖端的、最先进(SOTA)的模型,它在之前 YOLO 版本的成功基础上进行了建设,并引入了新的特性和改进,以进一步提高性能和灵活性。YOLOv8 旨在快速、准确且易于使用,使其成为广泛的对象检测、图像分割和图像分类任务的绝佳选择。
2023-04-15 11:07:21
2489
原创 SSD目标检测算法原理(上)
项目架构数据采集层: 数据标注、数据的存储格式深度模型层:数据预处理,GPU训练得到模型tensorflow serving 进行模型部署web后台用户层: 网页、小程序、检测识别结果项目安排三阶段识别图片中有哪些物体以及物体的位置(坐标位置)位置信息的表示极坐标表示示例中心点坐标 表示示例格式: x_center | y_center | box_weight | box_height目标检测的发展历史。
2023-03-24 18:58:36
1203
原创 用复试上机的要求 | 改写leedcode习题代码 | 经典题目
leedcode上的习题很经典,但是代码却不是我们熟悉的书写方式,这里我们给他改写成我们习惯的方式
2023-03-02 19:37:57
74
原创 考研复试机试 | C++ | 王道机试课程笔记
标准库里提供了栈.size() 栈的大小.push() 压栈.top() 获取栈顶元素.pop() 弹栈.empty()判断栈是否为空整数的数据类型。
2023-02-23 10:45:55
506
1
原创 leedcode刷题记录 | 代码详解
pass:其实判断条件可以简化的,因为x本身会被int限制,当x为正数并且位数和Integer.MAX_VALUE的位数相等时首位最大只能为2,所以逆转后不会出现res = Integer.MAX_VALUE / 10 && tmp > 2的情况,自然也不需要判断res==214748364 && tmp>7了,反之负数情况也一样。之后,你的输出需要从左往右逐行读取,产生出一个新的字符串,比如:“PAHNAPLSIIGYIR”。给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。
2023-02-06 15:43:45
1897
原创 考研复试机试 | 详细注释 | C++
为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n。给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3。合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
2023-01-30 17:52:14
987
原创 kaggle竞赛 | 计算机视觉 | Doodle Recognition Challenge
'作为实验性游戏发布,以有趣的方式向公众宣传 AI 的工作原理。游戏提示用户绘制描绘特定类别的图像,例如“香蕉”、“桌子”等。游戏生成了超过 1B 幅图画,其中的一个子集被公开发布,作为本次比赛训练集的基础。您需要构建一个识别器,它可以有效地从这些嘈杂的数据中学习,并在来自不同分布的手动标记的测试集上表现良好。每一种类型的数据图片,都放在一个单独的csv中,下面要对整个数据集进行处理。这里我们是先采用少量数据集训练,试一下数据是否拟合,若拟合。这里用的是opencv,cv的处理速度大于pillow。
2023-01-26 16:31:41
1059
原创 kaggle竞赛 | 计算机视觉 | 数字图像基础操作
其中光谱色所占的比例越大,颜色越接近光谱色,颜色的饱和度也就越高。饱和度高,颜色就越深越艳。RGB 颜色空间利用三个颜色分量的线性组合来表示颜色,任何颜色都与这三个分量有关,而且这三个分量是高度相关的,所以连续变换颜色时并不直观,想对图像的颜色进行调整需要更改这三个分量才行。明度表示颜色明亮的程度,对于光源色,明度值与发光体的亮度有关;RGB 是我们接触最多的颜色空间,由三个通道表示一幅图像,分别为红色®,绿色(G)和蓝色(B)。从红色开始安逆时针方向计算,红色为0度,绿色为120度,蓝色为240度。
2023-01-25 10:47:57
907
原创 kaggle竞赛 | Quora Insincere Question | 文本情感分析
之前发布了一遍实战类的情感分析的文章,包括微博爬虫,数据分析,相关模型。
2023-01-20 21:19:58
1598
2
原创 kaggle竞赛 | Instant Gratification
kaggle比赛链接:https://www.kaggle.com/competitions/instant-gratification/data查看所有列名,以及对应的列名(nunique()方法)返回不同值的个数可以看到这一列的不同值的个数是512个查看wheezy-copper-turtle-magic固定的情况下,其他字段的分布情况基本均满足正太分布,很规范的数据集训练一个逻辑回归模型结果基本是瞎猜的准确率(0.5)考虑到wheezy-copper-turtle-m
2023-01-16 17:55:46
626
原创 kaggle平台学习复习笔记 | 特征工程
特征工程决定了模型精度的上限。特征工程是数据挖掘的主要工作内容:数据清洗、数据预处理、数据转换。特征工程大概占据了60%-70%的时间。
2023-01-13 21:14:22
619
原创 kaggle平台学习复习笔记 | 数据划分与模型集成
可以看到,第一种划分不均匀,当添加参数stratify=Y时,可以看到数据均被转换为合理的数值格式,供模型训练使用。sklearn中封装的一系列的数据划分的代码。(24, 35) 是 Young Adult。在将新的特征拼接到训练集上,进行新的学习。(12, 18) 是 Teenager。(18, 24) 是 Student。在第一次学习的基础上生成新的特征,类似的查看其他字段和幸存率的关系。不均匀的分布方式 KFold。(5, 12) 是 Child。理想情况下AUC接近0.5。
2023-01-12 20:54:52
657
原创 kaggle平台学习复习笔记 | XGBoost、LightGBM and Catboost
介绍高阶树模型,它的出现略晚于随机森林使用原生接口def run_xgb(X_train , y_train , X_val , y_val , X_test) : # 参数参考官方文档 params = {
2023-01-09 17:19:31
604
国科大 高级软件工程 现代软件开发方法,期末复习
2024-07-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人