2017年技术分享会 - 大数据前沿技术分析与应用


随着互联网、移动互联网和物联网的发展,我们已经切实地迎来了一个大数据的时代。如何对海量数据进行挖掘和分析,已经成为一个非常重要且紧迫的需求。

从2008年Natural正式定义“大数据”开始,以Hadoop为代表的大数据处理和分析工具,以其可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流数据分析平台。大数据相关技术最近几年出现了井喷的趋势,众多技术纷纷出现,典型的系统包括Hadoop、Spark、Flume、Scribe、Kafka、Storm、Mahout、MLlib、Docker等,涵盖网络数据爬取、日志采集、分布式消息订阅、大数据分析挖掘等方面,涉及离线批处理、实时处理、流式处理等多种处理方式。这些技术来源于国外不同的著名大公司和科研院校(例如Storm源自Twitter,Spark源自UC Berkley),且大都以开源方式公开,用于解决不同的应用需求,涉及面广,技术要求高,交叉知识范围广,知识内容更新频繁,要理清其中的关系,从中发现最适合本机构的技术,成为了目前各机构技术专家的一个难点。

面对如此众多的新技术,为协助各机构研究人员对大数据前沿技术有一个深入了解,解决广大系统设计人员深入研究与开发大数据技术的需要,中科院计算所培训中心特举办“大数据前沿技术分析与应用”技术分享会,帮助各单位技术专家准确定位和发现相关的大数据平台和工具。

技术分享会具体事宜如下:

 

时间

2017年2月28日下午

 

地点

中科天博大厦一层

地址:北京海淀中关村958楼


会议议程

2017年2月28日(星期二)

12:30-13:25

中科天博大厦一层,签到、领资料

13:25-13:30

主持人致欢迎词

主题演讲

大数据前沿技术分析与应用(杨老师)

13:30-15:00

主要议题:

 

大数据技术基础

批处理大数据平台Hadoop

实时大数据平台Spark

流式大数据平台Storm

Python网络爬虫

15:00-15:15

茶歇

主题演讲

大数据前沿技术分析与应用(杨老师)

15:15-16:30

主要议题:

 

大数据日志采集工具Flume及Scribe介绍

分布式消息订阅工具Kafka应用介绍

NoSQL技术及云数据库介绍

大数据中的类SQL工具

大数据挖掘工具Mahout和MLlib

资源虚拟化工具Docker

16:30-16:45

答疑

 

分享嘉宾

杨老师 主要研究方向为网络信息分析以及云计算相关技术,长期从事通信网管系统、网络信息处理、商务智能(BI)以及电信决策支持系统的研究开发工作,包括网络中信息的采集、处理、优化及知识发现,具有丰富的工程实践及软件研发经验。曾任美国朗讯公司贝尔实验室研究员。

 

联系方式

地  址:北京海淀中关村958楼中科天博大厦(100086)

联系人:赵老师

电  话:010-82661199-111

传  真:010-82661221

E-mail:zhaoxl@tianbo.com.cn

 

温馨提示

1、因席位有限,每个机构限报名两人,请确定参会后及时将回执表传真或回邮至我处。

2、分享会前一周,发送报到通知给已报名人员,请大家确认回执表信息的准确性。



阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭